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Abstract

This thesis contains two research papers. The main objects of interest are
moduli spaces of sheaves and curves on Calabi–Yau spaces, e.g. K3 surfaces and
Calabi–Yau 3-folds.

In the first paper, in joint work with Miguel Moreira, we study the curve count-
ing invariants of Calabi–Yau 3-folds via the Weyl reflection along a ruled divisor.
We obtain a new rationality result and functional equation for the generating func-
tions of Pandharipande–Thomas invariants. When the divisor arises as resolution
of a curve of A1-singularities, our results match the rationality of the associated
Calabi–Yau orbifold.

The symmetry on generating functions descends from the action of an infinite
dihedral group of derived auto-equivalences, which is generated by the derived
dual and a spherical twist. Our techniques involve wall-crossing formulas and
generalized DT invariants for surface-like objects.

In the second paper, in joint work with Younghan Bae, we prove a conjecture
of Maulik, Pandharipande, and Thomas expressing the Gromov–Witten invariants
of K3 surfaces for divisibility two curve classes in all genus in terms of weakly
holomorphic quasimodular forms of level two. Then, we establish the holomorphic
anomaly equation in divisibility two in all genus.

Our approach involves a refined boundary induction, relying on the top tauto-
logical group of the moduli space of smooth curves, together with a degeneration
formula for the reduced virtual fundamental class with imprimitive curve classes.
We use the double ramification relations with target variety as a new tool to prove
the initial condition. The relationship between the holomorphic anomaly equation
for higher divisibility and the conjectural multiple cover formula of Oberdieck and
Pandharipande is discussed in detail and illustrated with several examples.
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Zusammenfassung

Die vorliegende Doktorarbeit besteht aus zwei Artikeln. Von zentraler Bedeu-
tung sind Modulräume von Garben und Kurven in Calabi–Yau Räumen, z.B. K3
Flächen und Calabi–Yau 3-Faltigkeiten.

Im ersten Artikel, in gemeinsamer Arbeit mit Miguel Moreira, studieren wir
die enumerativen Invarianten von Calabi–Yau 3-Faltigkeiten mittels der Weyl
Reflektion entlang eines geregelten Divisors. Wir erhalten neue Resultate zur
Rationalität und Funktionalgleichungen für die erzeugenden Funktionen von
Pandharipande–Thomas Invarianten. Wenn der Divisor als Auflösung einer Kurve
von A1-Singularitäten auftritt, stimmen unsere Ergebnisse mit der Rationalität
der assoziierten Calabi–Yau Orbifaltigkeit überein.

Die Symmetrie der erzeugenden Funktionen beruht auf der Wirkung einer un-
endlichen Diedergruppe von derivierten Autoäquivalenzen, welche vom dualisieren-
den Funktor und einem sphärischen Twist erzeugt wird. Unsere Techniken um-
fassen Wall-Crossing Formeln und verallgemeinerte DT Invarianten für Flächen-
ähnliche Objekte.

Im zweiten Artikel, in gemeinsamer Arbeit mit Younghan Bae, beweisen wir
eine Vermutung von Maulik, Pandharipande und Thomas, welche die Gromov–
Witten Invarianten von K3 Flächen für Kurvenklassen von Divisibilität zwei und
beliebigem Geschlecht mittels schwach holomorpher Quasimodulformen vom Level
zwei ausdrückt. Anschliessend zeigen wir die holomorphe Anomalie Gleichung in
Divisibilität zwei für beliebiges Geschlecht.

Unser Ansatz verwendet ein verfeinertes Induktionsverfahren, beruhend auf
der Struktur der höchsten tautologischen Gruppe des Modulraums glatter Kur-
ven, zusammen mit einer Degenerationsformel für die reduzierte virtuelle Funda-
mentalklasse für imprimitive Kurvenklassen. Wir verwenden die verallgemeinerten
Relationen von Zykeln doppelter Ramifizierung als neues Hilfsmittel um gewisse
Anfangsbedingungen zu beweisen. Wir erklären die Beziehung zwischen der holo-
morphen Anomalie Gleichung für höhere Divisibilität und die vermutete Formel
von Oberdieck und Pandharipande im Detail und wir geben mehrere Beispiele zur
Illustration.
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Chapter 1
Introduction

This thesis contains two research papers [3, 11]. The main objects of interest
are moduli spaces of sheaves and curves on Calabi–Yau spaces, e.g. K3 surfaces
and Calabi–Yau 3-folds. Their invariants (GW/DT/PT, motivic) are connected
to string theory and are of major interest to mathematicians and physicists. Com-
putations are notoriously difficult, but recent progress has been spectacular and
new, powerful techniques for effective calculations were introduced [10, 18, 23, 24,
26, 29].

For a Calabi–Yau 3-fold X the goal is to determine the partition function ZX ,
which gathers all numerical data in a single function. The famous MNOP conjec-
ture1 [19, 20] asserts the equivalence of Gromov–Witten theory and Donaldson–
Thomas theory. Either curve counting theory yields the same function ZX . We
use both theories to study ZX .

The GW theory has strong properties such as modularity and holomorphic
anomaly equations [6, 7]. The DT theory allows to unveil hidden symmetries
related to the derived category. For K3×E (smooth elliptic curve E) this strategy
was beautifully executed [25, 27]:

ZK3×E = − 1

χ10

.

The function is a meromorphic Siegel modular form. My work focuses on the
strict Calabi–Yau 3-fold case (H1(OX) = 0). A modular solution is expected, no
proposal exists. Below I describe our techniques for progress, which were developed
in two papers, one for each curve counting theory.

In the first paper (joint with M. Moreira) [11] we developed a framework to
use spherical twists, certain derived autoequivalences of Calabi–Yau 3-folds, to
deduce constraints on Pandharipande–Thomas stable pairs invariants. We provide
rigorous mathematical proofs of predictions made by physicists [15, 16, 17] in the
early 2000’s.

1The conjecture has been proved in many cases [21, 28].
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In the second paper (joint with Y. Bae) [3] we leveraged new results on universal
double ramification cycles [2] to prove a conjecture of Maulik, Pandharipande, and
Thomas [22] on GW invariants of K3 surfaces. The results concern the multiple
cover formula and the holomorphic anomaly equation.

1 Weyl symmetry and spherical twists

Let X be a smooth projective Calabi–Yau 3-fold. The Pandharipande–Thomas
invariants PTβ,n ∈ Z are curve counting invariants enumerating stable pairs in the
derived categoryDb(X) of curve class β ∈ H2(X,Z) and Euler characteristic n ∈ Z.
This theory is equivalent to the more classical Donaldson–Thomas theory counting
ideal sheaves of embedded curves. The associated generating function of invariants
is the partition function ZX . We study the symmetries of ZX induced by the action
of the group of derived autoequivalences

Aut
(
Db(X)

)
.

The modern way to obtain constraints on ZX is to use motivic Hall algebras,
Joyce’s generalized DT invariants, and wall-crossing formula [13, 14]. We were
able to succesfully employ this strategy in [11]. The derived autoequivalence is
directly related to the geometry of X.

1.1 Geometry

Let X be a Calabi–Yau 3-fold containing a smooth geometrically ruled divi-
sor W . Physical considerations for BPS state counts [15, 17] suggest that the curve
counting invariants of X are constrained by this constellation. More precisely, let
w ∈ H4(X,Z) be the class of the divisor and b ∈ H2(X,Z) be the class of the
rational curve of the ruling. Consider the Weyl symmetry on H2(X,Z) defined by

β 7−→ β′ = β + (w · β) b .

Since w · b = −2, this defines a reflection. For a smooth curve C representing the
class β we have the following illustration:
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w · β = ext2(OW , IC) = 4 [C] = β

W

β′ = β + 4b

The intersection product w · β agrees with the dimension of a certain Ext-group.
This fact is reminiscent of Serre’s intersection formula. Building on this observation
we are able to lift the Weyl symmetry to a derived autoequivalence

ρ ∈ Aut
(
Db(X)

)
and consider the action on the generating series of stable pairs invariants

PTβ(q,Q) =
∑
n,j∈Z

PTβ+jb,n (−q)nQj .

1.2 Main result

Under mild assumptions on the geometry we prove the following result.

Theorem 1.1 ([11, Theorem 1.1]).

PTβ(q,Q)

PT0(q,Q)
∈ Q(q,Q)

is the expansion of a rational function fβ(q,Q) with functional equations

fβ(q
−1, Q) = fβ(q,Q) ,

fβ(q,Q
−1) = Q−w·β fβ(q,Q) .

The first functional equation is the q ↔ q−1 invariance induced by the derived
dual [8, 31, 32]. It is of fundamental importance for the MNOP correspondence.
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The second functional equation is induced by ρ and precisely corresponds to the
Weyl symmetry. A basic example of such a rational function is (related to the
local geometry KP1×P1)

f(q,Q) =
q2

(1− qQ)2(q −Q)2
.

The derived autoequivalence ρ arises as a composition of the derived dual and
a spherical twist [1, 12, 30]. The induced action on stable pairs leads to torsion-
free objects in a certain heart of bounded t-structure in the derived category and
we use a two-dimensional family of stability conditions to interpolate between the
two. The proof involves a careful analysis of the wall-crossing behavior and the
combinatorics of the wall-crossing formulas closely related to [5].

2 Gromov–Witten invariants of K3 surfaces

The enumerative geometry of smooth complex projective K3 surfaces concerns
questions of classical nature such as the number of rational curves in a given lin-
ear system, as well as questions in Gromov–Witten theory or Donaldson–Thomas
theory. In the last two decades the field has seen substantial development in all
of these areas, and the interplay between them has led to proofs of longstanding
conjectures.

2.1 Modularity

The enumerative invariants associated to K3 surfaces exhibit connections to
number theory in remarkable ways. The first instance of this is the following
beautiful formula conjectured by Yau–Zaslow [33] and proved in [4, 9]

∑
h≥0

Nh q
h−1 = q−1

∞∏
n=1

1

(1− qn)24
. (1.1)

Here, the numbers Nh are the counts of rational curves in a given primitive linear
series of arithmetic genus h. The right hand side of (1.1) is the inverse of the
famous discriminant modular form. This theme generalizes to the Gromov–Witten
theory of K3 surfaces: gathered as generating series, these invariants are expected
to form meromorphic quasimodular forms in all cases. In a seminal work Maulik,
Pandharipande, and Thomas [22] provided proofs of this statement for primitive
curve clases, and introduced powerful techniques to calculate the invariants. A
precise conjecture about the modularity was put forward. In a joint work with Y.
Bae we were able to prove this conjecture for all descendents and all genus when

9



the curve class has divisibility ≤ 2. We can also deduce the holomorphic anomaly
equation, a differential equation expressing the formal derivative of a quasimodular
form with respect to the Eisenstein series C2 in terms of lower genus data.

Theorem 2.1 ([3, Thm. 1]). For all homogeneous γ1, . . . , γn ∈ H∗(S) the gener-
ating series of descendent GW invariants〈

τa1(γ1), . . . , τan(γn)
〉
g,2
∈ 1

∆(q)2
QMod(2)

is the expansion of a level 2 quasimodular form. Moreover, the formal C2-derivative
satisfies the holomorphic anomaly equation.

Of special interest here is the divisibility of the curve class. For primitive
classes, an algorithm [22] involving degeneration, localization, and strong results
about the tautological ring R∗(M g,n) allows calculation of the Gromov–Witten
invariants. The procedure ultimately reduces to the Yau–Zaslow formula (1.1),
which lies at the heart of the modularity. This algorithm breaks down for imprim-
itive curve classes. The basic reason is that the procedure reduces to a much more
complicated, although finite, set of initial conditions. In our work, we are able
to provide proofs for these initial conditions. The key ingredient are the double
ramification relations as developed in [2], which do not depend on the divisibility of
the curve class. Special properties of the reduced obstruction theory (the splitting
behavior of reduced classes) for K3 targets are essential.
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Chapter 2
Weyl symmetry for curve counting invariants

via spherical twists

Tim-Henrik Buelles and Miguel Moreira

1 Introduction

1.1 Overview

Let X be a Calabi–Yau 3-fold containing a smooth geometrically ruled divi-
sor W . Physical considerations for BPS state counts [24, 27] suggest that the curve
counting invariants of X are constrained by this constellation. More precisely, let
w ∈ H4(X,Z) be the class of the divisor and b ∈ H2(X,Z) be the class of the
rational curve of the ruling. Consider the Weyl symmetry on H2(X,Z) defined by

β 7−→ β′ = β + (w · β) b .

Since w · b = −2, this defines a reflection. The guiding example is that of an
elliptic Calabi–Yau 3-fold

X → P1 × P1

which is fibered in elliptic K3 surfaces over P1, see Section 1.6. For K3 curve classes
β, the Weyl symmetry β ↔ β′ is exactly realized on the level of Gopakumar–Vafa
invariants

nK3
g,β = nK3

g,β′ .

The equality is reminiscent of the monodromy for quasi-polarized K3 surfaces.
For arbitrary β ∈ H2(X,Z) such an equality cannot hold, for example when
β ∈ H2(W,Z) in which case the invariants are given by the local surface KW .
Instead, we find that the Weyl symmetry is realized as a functional equation. This
symmetry is analogous to the rationality and the q ↔ q−1 invariance for generating
series of Pandharipande–Thomas stable pairs invariants.

The Pandharipande–Thomas (PT) [40] invariants PTβ,n ∈ Z are curve counting
invariants enumerating stable pairs in the derived category Db(X) with curve class
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β and Euler characteristic n ∈ Z. Our results concern the 2-variable generating
series1

PTβ(q,Q) =
∑
n,j∈Z

PTβ+jb,n (−q)nQj .

Let E be a rank 2 bundle over a smooth projective curve C of genus g and p : W =
PC(E)→ C be the corresponding P1-bundle. We will assume that X admits a nef
class A ∈ Nef(X) which vanishes only on the extremal ray spanned by b, i.e.2

Ker
(
N eff

1 (X)
A·−→ Z

)
= Z≥0 · b . (♢)

The generating series PT0 of multiples of b is easily computed as

PT0(q,Q) =
∏
j≥1

(1− qjQ)(2g−2)j.

Our main result is:

Theorem 1.1. Let X be a Calabi–Yau 3-fold containing a smooth divisor W
satisfying condition (♢). Then

PTβ(q,Q)

PT0(q,Q)
∈ Q(q,Q)

is the expansion of a rational function fβ(q,Q) such that

fβ(q
−1, Q) = fβ(q,Q) ,

fβ(q,Q
−1) = Q−w·β fβ(q,Q) .

The rationality in q and the invariance under q ↔ q−1 are well-known [8, 40,
47, 50]. The symmetry is induced by the action of the derived dual DX on Db(X).
Analogously, we introduce a derived anti-equivalence ρ of order two, which pro-
motes the Weyl reflection to the derived category and induces the second functional
equation on generating functions. It is defined as

ρ = tΦ ◦ DX ,

where tΦ is a derived equivalence of infinite order induced by a spherical functor Φ.
The image of a stable pair under ρ leads to complicated objects in the derived

category and a symmetry on invariants is not easily deduced. Instead, we consider
an abelian category

A ⊂ D[−1,0](X) ,

1We use the non-standard sign −q which simplifies some formulas.
2We do not require the line bundle to be basepoint-free and we do not assume a contraction

morphism. Such a nef class exists in many cases, e.g. for elliptic Calabi–Yau 3-folds.
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defined as a tilt of Coh(X) along a torsion pair. The action of ρ on A is analogous
to the action of DX on Coh(X). In particular, we consider a notion of dimension
which is preserved by ρ (up to shift). Define the extension closure

pB =
〈
OX [1] ,A≤1

〉
.

The action of ρ induces a symmetry for perverse PT invariants pPTγ,n enumerating
torsion-free objects in pB. These objects are allowed to have non-trivial first Chern
class a multiple of the class w. For r ∈ Z and γ = (rw, β) define the generating
series

pPTγ(q,Q) =
∑
n,j∈Z

pPTγ+jb,n (−q)nQj ∈ Q[[q±1, Q±1]] .

The rationality and functional equation for pPTγ is proved via Joyce’s wall-crossing
formula [22]. The formula involves generalized DT invariants for surface-like ob-
jects supported on W with non-trivial Euler pairings.

Theorem 1.2.
pPTγ(q,Q) ∈ Q(q,Q)

is the expansion of a rational function fγ ∈ Q(q,Q) with functional equation

fγ(q
−1, Q−1) = Q−w·β+(2−2g)r fγ(q,Q) .

Theorem 1.1 is a consequence of Theorem 1.2 in the special case r = 0, together
with the q ↔ q−1 symmetry. The comparison between stable pairs and perverse
stable pairs is given by a second wall-crossing. The following formula holds as an
equality of rational functions but not necessarily as generating series.

Theorem 1.3.
pPT(0,β)(q,Q) =

PTβ(q,Q)

PT0(q,Q)
.

1.2 Crepant resolution

The results and techniques of this paper are strongly influenced by the re-
cent proof of the crepant resolution conjecture by Beentjes, Calabrese and Ren-
nemo [5] for Donaldson–Thomas (DT) invariants [44]. Consider a type III con-
traction X → Y with exceptional divisor W , contracting the rational curves of
the ruling. Assume that X → Y is the distinguished crepant resolution of the
(singular) coarse moduli space of a Calabi–Yau orbifold Y

Y X

Y
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The derived McKay correspondence proposed by Bridgeland, King, and Reid [9]
induces a derived equivalence

Φ: Db(X)
∼−→ Db(Y) ,

which restricts to an equivalence [13, Theorem 1.4]

A ∼−→ Coh(Y) .

The notion of perverse stable pairs on X coincides with the image of stable pairs
on Y . The results of Theorems 1.1, 1.2, and 1.3 are the rationality and func-
tional equation of PT(Y) and the wall-crossing between Φ−1

(
PT(Y)

)
and Bryan–

Steinberg pairs of X → Y [5, 11, 13]. The nef class is given by the pullback of an
ample class on Y and the derived anti-equivalence ρ corresponds to the derived
dual of Y

ρ = Φ−1 ◦ DY ◦ Φ .

1.3 Spherical twist

Define the functor Φ: Db(C)→ Db(X) as

Φ(V ) = ι∗
(
Op(−1)⊗ p∗V

)
.

This defines a spherical functor [2, 17, 42]. Let ΦR be the right adjoint. The
cone of the counit morphism defines the spherical twist tΦ, an autoequivalence
of Db(X), via

Φ ◦ ΦR → id→ tΦ .

The derived dual DX and the spherical twist tΦ generate an infinite dihedral group
(containing ρ) which underlies the functional equations of Theorem 1.1.

1.4 Gromov–Witten/ BPS invariants

The second functional equation of Theorem 1.1 implies strong constraints for
the enumerative invariants in curve classes β + jb for varying j ∈ Z and fixed
genus. In particular, finitely many j determine the full set of these invariants.
Let GWh,β be the Gromov–Witten invariants of X and assume that the GW/PT
correspondence [33, 34, 35, 39] holds for X.

Corollary 1.4. For all (h, β) ̸= (0,mb) , (1,mb) the series∑
j∈Z

GWh,β+jbQ
j

is the expansion of a rational function fh,β(Q) with functional equation

fh,β(Q
−1) = Q−w·βfh,β(Q) .
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The rational function is expected to have the particular form

fh,β =
ph,β(Q)

(1−Q)d

which leads to polynomiality of GWh,β+jb and the limit behavior of BPS counts (as
j →∞) discussed in the physics literature [23, Section 5]. For the local Hirzebruch
surface KW we give full proofs in Appendix 8.

1.5 Elliptic Calabi–Yau 3-folds

Let p : S → C be a P1-bundle over a smooth projective curve C and

f : X → S

an elliptic fibration3 with a section W . Let D be a sufficiently ample divisor on C
such that −KS + p∗D is ample. A nef class satisfying the condition (♢) is given
by

w + f ∗(−KS + p∗D) ∈ H2(X,Z) .

For any β ∈ H2(W,Z) define

Pβ(q, t) =
∑
d≥0

∑
n∈Z

PTβ+df,n (−q)n td ,

where f ∈ H2(X,Z) is the class of a smooth elliptic fiber. Recent considerations
in topological string theory [18] predict that

Zβ(q, t) =
Pβ(q, t)

P0(q, t)

is the expansion of a meromorphic Jacobi form. Theorem 1.1 implies non-trivial
constraints among the Jacobi forms {Zβ+jb}j∈Z.

1.6 STU

Theorem 1.1 and Corollary 1.4 provide mathematical proofs of a heterotic
mirror symmetry on BPS invariants as observed in [26]. The symmetry is discussed
for type IIA duals of the STU model, i.e. the elliptic Calabi–Yau 3-fold

X → P1 × P1

3Since X is Calabi–Yau, C is necessarily rational and S is a Hirzebruch surface.
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such that both projections to P1 define K3-fibrations with 528 singular fibers with
exactly one double point as singularity. This geometry can be constructed as a
hypersurface in a toric variety [25].

The symmetry on BPS invariants [26, Section 6.10.3] is realized by the second
functional equation of Theorem 1.1 and we can identify the infinite order sym-
metry [26, Equation 6.65] with the action of tΦ. The rationality and functional
equation of Corollary 1.4 verifies [26, Equation 6.67]. We obtain the precise form
of the rational function for the local case KP1×P1 in Appendix 8.

As a special case of the rationality and functional equation, consider β = hf
a multiple of the elliptic fiber class. Then, the generating function is in fact a
Laurent polynomial in Q and the functional equation

fβ(q,Q
−1) = Q−w·β fβ(q,Q)

holds at the level of coefficients and recovers the symmetry

nK3
g,mb+hf = nK3

g,(h−m)b+hf

of BPS invariants for K3 surfaces. This symmetry is usually seen as a consequence
of the monodromy for quasi-polarized K3 surfaces.

A related geometry, also called an STU model in the physics literature, may
be useful towards a crepant resolution conjecture in the non hard Lefschetz case.
We consider

X → F1

an elliptic Calabi–Yau 3-fold over the Hirzebruch surface F1. The fibration has a
section W and we obtain X 99K X ′ as the Atiyah flop along the rational curve
in W of self-intersection −1. After this transformation we have a type II contrac-
tion X ′ → Y ′ with exceptional divisor P2, which is the crepant resolution of an
isolated canonical singularity. After the flop formula for DT invariants [12, 48],
the symmetry of Theorem 1.1 must induce a symmetry on X ′.

1.7 Outline

We briefly sketch the strategy of the paper. Section 2 contains a discussion
of perverse sheaves and the perverse t-structure associated to the geometry. We
introduce the anti-equivalence ρ and show several important properties that will
be needed in the later parts. In Section 3 we recall some facts about Hall algebras,
pairs, and wall-crossing, and we set notation for the rest of the paper. Stability
conditions play an important role for this paper and we comment on them in
Section 4. In Section 5 we introduce invariants which resemble Bryan–Steinberg

18



invariants [11] and we prove a wall-crossing formula between those and usual PT
invariants. The wall-crossing formula shows a relation of the form

BSβ =
PTβ

PT0

and thus gives a natural interpretation to the quotient on the right hand side. The
rationality and symmetry for pPT invariants are proven in Section 6. Essentially,
the result is obtained by comparing pPT invariants with ρ(pPT) invariants in
two ways: first using the anti-equivalence ρ, and then using wall-crossing. In
Section 7 we describe a wall-crossing between the BS invariants and the perverse
pPT invariants (which in the crepant case X → Y are the orbifold invariants).
An important aspect is that while PT and BS invariants are defined using the
integration map on the Hall algebra obtained from the heart Coh(X) ⊂ Db(X),
the perverse pPT invariants are defined using the heart A ⊂ Db(X). The ζ-wall-
crossing of Section 7 takes place in A. In Section 7.2 we identify BS-pairs as
the pairs in the end of the ζ–wall-crossing. The following diagram represents the
different invariants we use in the paper and their relations. The squiggly arrows
represent wall-crossing formulas.

PT BS (ζ, 0) pPT

ρ(pPT)

5 7.2 7

62.3

1.8 Related work

The following question was posed by Toda [49]:

Question. How are stable pair invariants on a Calabi–Yau 3–fold constrained,
due to the presence of non-trivial autoequivalences of the derived category?

The most famous instance is the rationality and functional equation induced by
the derived dual. Similarly, the elliptic transformation law for Zβ(q, t) is deduced
from a derived involution [38]. Significant progress for abelian 3-folds was made
using Bridgeland stability conditions [37]. The Seidel–Thomas spherical twist for
an embedded P2 was considered in [49] and certain polynomial relations for stable
pairs invariants were obtained. Our results provide an answer to Question 1.8 for
the involution ρ. The flop construction X 99K X ′ of the previous section must
connect our results with the ones obtained in [49, Theorem 1.2].
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1.9 Conventions

We work over the complex numbers. The canonical bundle of W is denoted
KW . Intersection products are denoted by a dot, e.g. w · β. Stable pairs are
considered in cohomological degree −1 and 0. This convention follows [5] and
differs from [40].
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2 Perverse t-structure

In this section we give a self-contained discussion of perverse sheaves and du-
ality associated to the following geometry.

2.1 Geometry

Let C be a smooth projective curve, E a locally free sheaf of rank 2, and
W = PC(E) a geometrically ruled surface with projection p : W → C. We assume
that E∨ is globally generated4 and we fix line bundles L1, L2 ∈ Pic(C) such that

0→ L1 → E∨ → L2 → 0 .

Let X be a smooth projective Calabi–Yau 3-fold containing W as a divisor:

W X

C

ι

p

The curve class of a fiber of p (and its pushforward to X) is denoted b. The
nef class A of condition (♢) restricts to a multiple of the fiber class, i.e. ι∗A is

4Twisting E∨ with an ample line bundle does not change the geometry PC(E).
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numerically equivalent to a0b for some a0 ∈ Z>0. Recall that we have the Euler
sequence on W which we will use repeatedly:

0→ ωp → Op(−1)⊗ p∗E∨ → OW → 0 .

2.2 Torsion pair

Define the category

T =
{
T ∈ Coh(X) | R1p∗(ι

∗T ) = 0
}
.

Lemma 2.1. The subcategory T ⊂ Coh(X) is closed under extensions and quo-
tients in Coh(X).

Proof. Use the long exact sequence of higher pushforward sheaves and the fact
that R2p∗ = 0 since the fibers of p are 1-dimensional.

Define the orthogonal complement

F = T ⊥ = {F ∈ Coh(X) | Hom(T, F ) = 0 for all T ∈ T } .

By [48, Lemma 2.15] we obtain a torsion pair (T ,F) of Coh(X).
Throughout, if a sequence of full subcategories C1, . . . , Cm ⊂ C of some abelian

category C forms a torsion m-tuple [50, Definition 3.6] we write

C =
〈
C1, . . . , Cm

〉
.

We consider the perverse t-structure on Db(X) whose heart is the tilt [16]

A =
〈
F [1], T

〉
.

Every E ∈ Db(X) has associated perverse cohomology pHi(E) ∈ A and exact
triangles lead to long exact sequences of perverse cohomology. Define the perverse
dimension

p dim(E) = max
{
dim supp(E) ∩ (X \ W ) , dim p

(
supp(E) ∩W

)}
.

We write A≤k for elements of A with perverse dimension at most k and Ak for
elements with pure perverse dimension k, i.e.

Hom(A≤k−1,Ak) = 0 .

We also denote Fk[1] = F [1] ∩ Ak and Tk = T ∩ Ak.
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2.3 Duality

The derived dualizing functor (−)∨ = RHom(−,OX) is a duality for the stan-
dard t-structure on Db(X). We introduce a duality ρ on Db(X) which is the analog
for the perverse t-structure.

Define the functor Φ: Db(C)→ Db(X) as

Φ(V ) = ι∗
(
Op(−1)⊗ p∗V

)
.

The right adjoint is

ΦR(E) = Rp∗
(
Op(1)⊗ ωW [−1]⊗ Lι∗E

)
.

The cotwist cotΦ is defined as the cone of the unit morphism

id→ ΦR ◦ Φ→ cotΦ .

A direct calculation shows that ΦR ◦ Φ splits as

ΦR ◦ Φ ∼= id ⊕ωC [−2]

and cotΦ is isomorphic to ωC [−2], which is an auto-equivalence. Thus, Φ is a
spherical functor [2, 17, 42] and we obtain an auto-equivalence of Db(X), the twist
tΦ, defined as the cone of the counit morphism [2, Theorem 1.1]

Φ ◦ ΦR → id→ tΦ .

We consider an anti-equivalence of order two defined as5

ρ = tΦ ◦ [2] ◦ (−)∨ .

For any E ∈ Db(X) we have the important exact triangle

E∨[2]→ ρ(E)→ Φ ◦ ΦR[1]
(
E∨[2]

)
. (∆)

We can now state the main, and most difficult, result of this section.

Theorem 2.2.

(i) ρ
(
A0

)
⊂ A0[−1],

(ii) ρ
(
A1

)
⊂ A1.

5The derived dual of Section 1.1 is DX = [2] ◦ (−)∨.
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Outline. The proof will be given in Sections 2.6 to 2.9. We start with properties
and basic results in Sections 2.5, 2.6. In Section 2.7 we prove that objects in
A with support contained in W are successive extensions of objects which are
scheme-theoretically supported on W . This will also be applied in Section 4 to
prove that a function ν defines a stability function on A≤1. Theorem 2.2 (i) is
proved in Section 2.8. In Section 2.9 we prove that for any E ∈ A≤1 the perverse
cohomology sheaves satisfy

pHi
(
ρ(E)

)
= 0 , i ̸= 0, 1 , pH1

(
ρ(E)

)
∈ A0 . (∗)

This suffices to deduce Theorem 2.2 (ii).

Theorem 2.2 should remind the reader of an analogous property of the derived
dual DX acting on Coh(X):

DX(Coh0(X)) = Coh0(X)[−1] , DX(Coh1(X)) = Coh1(X) .

Indeed, the next section clarifies the origin of this analogy.

2.4 Crepant case

We explain now our main motivation for the tilt A and for the derived anti-
equivalence ρ by considering the case of a type III contractionX → Y , as described
in Section 1.2.

In this setting, Y is the coarse moduli space of a Calabi–Yau orbifold Y that
has BZ2-singularities along a copy of the curve C. The derived categories of X
and Y are isomorphic via the derived McKay correspondence [9]

Φ: Db(X)
∼−→ Db(Y) .

The heart A ⊂ Db(X) coincides with Bridgeland’s category of perverse
sheaves [7, 51]

A = 0Per(X/Y ) ,

so under the McKay correspondence it should be regarded as Coh(Y). Indeed, let
j0 : C0 ↪→ Y be the contraction of W , i.e. C0 = π(W ). Then, for any T ∈ Coh(X)
the higher pushforward R1π∗T is supported on C0, so R1π∗T = 0 if and only if

0 = j∗R1π∗T = R1p∗ι
∗T.

The equality used holds by the proper base change theorem.
Under the McKay correspondence, the notion of perverse dimension that we

defined coincides with the usual dimension on the orbifold. The anti-equivalence
ρ coincides with the derived dual DY = RHom(−,OY)[2] on the orbifold, i.e.:
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Proposition 2.3. In the setting above, we have

ρ = Φ−1 ◦ DY ◦ Φ .

Proof. We let Ψ = Φ−1 ◦ DY ◦ Φ ◦ ρ. Since Φ is a derived equivalence, whereas ρ
and DY are derived anti-equivalences, the composition Ψ is a derived equivalence.
We prove that Ψ is isomorphic to the identity by analysing Ψ(k(x)) and using
again [19, Corollary 5.23].

If x ∈ X \ W then Lemma 2.4 shows that

Ψ(k(x)) =
(
Φ−1 ◦ DY ◦ Φ

)(
k(x)[−1]

)
=
(
Φ−1 ◦ DY)(k(π(x))[1] = k(x) .

For x ∈ W , one has the exact triangle of Lemma 2.4 and applying Φ−1 ◦DY ◦Φ
to it produces the exact triangle

OB(−1)→ Ψ(k(x))→ OB(−2)[1]. (2.1)

We used that Φ−1 ◦DY ◦Φ is an anti-equivalence and we determine the images of
OB(−2),OB(−1)[−1] using [10, Section 4.3], [5, Appendix A]

Φ
(
OB(−2)[1]

)
= O+

p , Φ
(
OB(−1)

)
= O−

p , DY(O±
p

)
= O±

p [−1] .

Extensions determined by (2.1) are classified by

Hom(OB(−2),OB(−1)) ∼= C2

and we get that Ψ(k(x)) ∼= k(f(x)) for some f(x) ∈ B = π−1
(
π(x)

)
.

By [19, Corollary 5.23] it follows that f : X → X is an isomorphism and
Ψ = (M ⊗−)◦f∗ for some line bundle M . Since f|X\W = idX\W , we conclude that
f = id. By Proposition 2.5 and the fact that Φ preserves structure sheaves, one
easily sees that Ψ(OX) = OX and thus M is the trivial line bundle, so Ψ ∼= id.

As we mentioned in Section 1.2, when X is obtained as a crepant resolution
our results follow from [5]. The previous proposition explains how the heart A
and the duality ρ play the role of Coh(Y) and DY , respectively, in the proof of the
rationality and functional equation for the orbifold PT invariants [5].

2.5 Properties of ρ

We gather here some of the key properties of the duality operator ρ. We begin
with a direct computation of the image of some objects (of perverse dimension 0)
under ρ.

Lemma 2.4. For all points x ∈ X and fibers B ⊂ W
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(i) If x ̸∈ W , then ρ(k(x)) = k(x)[−1],

(ii) ρ
(
OB(−2)[1]

)
= OB(−2),

(iii) ρ
(
OB(−1)

)
= OB(−1)[−1],

(iv) if x ∈ B there is an exact triangle

OB(−2)→ ρ
(
k(x)

)
→ OB(−1)[−1] ,

(v) for all k ≤ −2, ρ
(
OB(k)[1]

)
∈ A0[−1],

(vi) for all k ≥ −1, ρ
(
OB(k)

)
∈ A0[−1].

Proof. Part (i) follows from k(x)∨[2] = k(x)[−1] and ΦR

(
k(x)

)
= 0. Part (ii) and

(iii) are computed directly. Then, any x ∈ B corresponds to an exact triangle

OB(−1)→ k(x)→ OB(−2)[1] ,

and application of ρ yields (iv). For (v) and (vi) we can use induction on k to
reduce to (ii) and (iii) respectively.

Proposition 2.5. We have

ρ
(
OX) = OX [2] , ρ ◦ ρ = id .

Proof. The first claim follows from ΦR(OX) = 0, thus

ρ(OX) = O∨
X [2] = OX [2] .

For the second claim we use the computations in Lemma 2.4 which imply that for
all x ∈ X there is y ∈ X such that

ρ ◦ ρ
(
k(x)

) ∼= k(y) .

Moreover, x = y for x ∈ X \W . Now we apply the general fact [19, Corollary 5.23]
that any auto-equivalence Ψ with Ψ(k(x)) ∼= k(f(x)) is of the form

Ψ = (M ⊗−) ◦ f∗ ,

where f : X → X is an isomorphism and M is a line bundle. Then f|X\W = id,
thus f = id, and by the first claim M must be the trivial line bundle.

The action of ρ on cohomology can be directly computed using the exact tri-
angle (∆). For our purposes, it suffices to consider objects E ∈ A≤1, in particular
ch0(E) = 0, and ch1(E) is a multiple of w. It is convenient to compute the action
using (ch1, ch2, χ).
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Proposition 2.6. The anti-equivalence ρ acts on (ch1, ch2, χ) as(
rw, β, n

) ρ7−→
(
rw, β +

(
w · β − (2− 2g)r

)
b,−n

)
.

Proof. First note that for all V ∈ Db(C) we have

χ
(
Φ(V )

)
= χ

(
ι∗(Op(−1)⊗ p∗V )

)
= χ

(
Rp∗(Op(−1))⊗ V

)
= 0 .

Thus, χ
(
ρ(E)

)
= χ

(
E∨[2])

)
= −χ(E). Next, we compute the class of ρ(E) for

E = ι∗Op(−1) = Φ(OC). We have r = 1 and denote by β = ch2(E). Using
ΦR ◦ Φ ∼= id ⊕ωC [−2] we find (see also the proof of Lemma 2.19)

ρ(E) ∼= Φ
(
ω2
C ⊗ det(E∨)

)
.

Thus, ch1

(
ρ(E)

)
= ch1(E) and

ch2

(
ρ(E)

)
= β +

(
4g − 4 + deg(E∨)

)
b

= β +
(
w · β − (2− 2g)

)
b .

Finally, let E ∈ Db(X) with [E] = (β, n) ∈ N≤1(X). Then

ch(Lι∗E) = ch(E)− ch(E ⊗OX(−W )) = w · β ∈ N0(W ) .

Using the triangle (∆), we find ch1

(
ρ(E)

)
= 0 and

ch2

(
ρ(E)

)
= β + (w · β) b .

The three cases together prove the claim by additivity.

2.6 Basic results (proof of Theorem 2.2)

We start by setting up some notation that will later be useful in the induction
process we’ll use.

Notation 2.7. Let ω ∈ Amp(X) be an ample class and E ∈ Coh(X) with at most
1-dimensional support outside of W . Denote by chω

i (E) = ω3−i · chi(E). We write
chω(E ′) < chω(E), if

(i) 0 ≤ chω
1 (E

′) < chω
1 (E), or

(ii) 0 = chω
1 (E

′) = chω
1 (E), and 0 ≤ chω

2 (E
′) < chω

2 (E), or

(iii) 0 = chω
1 (E

′) = chω
1 (E), and 0 = chω

2 (E
′) = chω

2 (E), and
0 ≤ chω

3 (E
′) < chω

3 (E).

26



Then, chω(E) ≥ 0 with equality if and only if E = 0. Note that chω(E) > 0 is
minimal if and only if E ∼= k(x) for some x ∈ X.

Notation 2.8. For G′, G ∈ Coh(W ) we write R1p∗G
′ < R1p∗G if

(i) 0 ≤ rk
(
R1p∗G

′) < rk
(
R1p∗G

)
, or

(ii) 0 = rk
(
R1p∗G

′) = rk
(
R1p∗G

)
, and len

(
R1p∗G

′) < len
(
R1p∗G

)
, where

len(−) is the length of a 0-dimensional sheaf.

Lemma 2.9. (i) For all T ∈ Coh(X)

R1p∗Lι
∗T = R1p∗ι

∗T .

(ii) There is a short exact sequence

0→ R1p∗L
−1ι∗(T )→ p∗Lι

∗(T )→ p∗ι
∗(T )→ 0 .

(iii) For all G ∈ Coh(W ), Lkι∗ι∗G = 0 for k ̸= 0,−1 and

L−1ι∗ι∗G = ω∨
W ⊗G , ι∗ι∗G = G .

Proof. There is a spectral sequence

Ek,l
2 = Rkp∗Hl(Lι∗T ) =⇒ Rk+lp∗Lι

∗T .

Since dim(p) = 1, the only non-vanishing term contributing toR1p∗Lι
∗T isR1p∗ι

∗T
and the differentials vanish. The second statement follows analogously. The third
assertion follows from ι∗OX(−W ) = ω∨

W .

Lemma 2.10.

(i) If ι∗G ∈ F , then p∗G = 0,

(ii) if ι∗G ∈ A≤1, then Rp∗(G) ∈ Coh(C).

Proof. If p∗G ̸= 0 we may choose a sufficiently ample L ∈ Pic(C) and a non-zero
section L∨ → p∗G. By adjunction we have a non-zero p∗L∨ → G. This contradicts
ι∗G ∈ F because R1p∗p

∗L∨ = 0, i.e. ι∗p∗L∨ ∈ T . The statement (ii) follows from
(i) and the definition of T .

Lemma 2.11. (i) For all G ∈ Coh(W )

rk
(
R1p∗(Op(1)⊗G)

)
≤ rk(R1p∗G) ,

with strict inequality if rk(R1p∗G) > 0. In that case

rk
(
R1p∗(ω

∨
W ⊗G)

)
< rk(R1p∗G) .
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(ii) If rk(R1p∗G) = 0, then

dim
(
R1p∗(Op(1)⊗G)

)
≤ dim(R1p∗G) ,

with strict inequality if dim(R1p∗G) > 0. In that case

dim
(
R1p∗(ω

∨
W ⊗G)

)
< dim(R1p∗G) .

Proof. The second assertion follows from the first one since

ωW = Op(−2)⊗ p∗(ωC ⊗ det E∨) .

(i) Denote by rk = rk
(
R1p∗(Op(k) ⊗ G)

)
. Let C0 ⊂ W be the zero locus of a

section of Op(1), thus C0 is a section of the projection p. For all k ∈ Z there is a
sequence

Op(k − 1)⊗G→ Op(k)⊗G→ OC0(k)⊗G→ 0 .

Thus, rk ≤ rk−1. The Euler sequence on W implies

det(E∨)⊗R1p∗(Op(k − 2)⊗G)→ E∨ ⊗R1p∗(Op(k − 1)⊗G)
→ R1p∗(Op(k)⊗G)→ 0 ,

thus rk−2 − 2 rk−1 + rk ≥ 0. If rk−1 = rk−2, then rk = rk−1, thus rk = r0 > 0 for
all k ≥ 0. This is a contradiction since Op(1) is p-ample and so rk = 0 for k ≫ 0.
For (ii) The proof is the same, with rank replaced by the length of 0-dimensional
sheaves.

Recall the sequence from Section 2.1

0→ L1 → E∨ → L2 → 0 .

Let g be the genus of C and define

k− = −g +min{0, deg(L1), deg(L2)} − 1 ,

k+ = −g +max{0, deg(L1), deg(L2)}+ 1 .

We have the following technical lemma which we will apply multiple times.

Lemma 2.12. Let 0 ̸= ι∗G ∈ A≤1. There is a line bundle L ∈ Pic(C) and a
non-zero morphism K → G with

K = Op(−1)⊗ p∗L , or K = ωp ⊗ p∗L[1] .

If Rp∗G ̸= 0, we may choose L such that

k− +
χ(G)

max{rk(Rp∗G), 1}
≤ χ(L) ≤ k+ +

χ(G)

max{rk(Rp∗G), 1}
.

If Rp∗G = 0, we may choose L such that

χ(L) = χ
(
G⊗Op(1)

)
− 1 .
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Remark 2.13. Note that if ι∗G ∈ T≤1, then K = Op(−1)⊗ p∗L because

Hom(F [1], T ) = 0 .

Proof. Recall that Rp∗G ∈ Coh(C) is a sheaf by Lemma 2.10, in particular
rk(Rp∗G) ≥ 0. First, assume that Rp∗G ̸= 0. Let M ∈ Pic(C) with

rk(Rp∗G) deg(M) < χ(G) ,

then by Riemann–Roch
H0(C,M∨ ⊗Rp∗G) ̸= 0 .

We may choose M so that deg(M) is the nearest integer to

χ(G)

max{rk(Rp∗G), 1}
− 1 .

Note that when rk(Rp∗G) = 0 we must have χ(G) = χ(Rp∗G) ≥ 0 since Rp∗G ∈
Coh0(C).

Now we can use the Euler sequence on W which yields an exact triangle in A≤1:

Op(−1)⊗ p∗(E∨ ⊗M)→ p∗M → ωp ⊗ p∗M [1] .

Since Hom(p∗M,G) = H0(C,M∨ ⊗Rp∗G) ̸= 0, we find

Hom(Op(−1)⊗ p∗(E∨ ⊗M), G) ̸= 0 , or
Hom(ωp ⊗ p∗L[1], G) ̸= 0 .

In the latter case, set K = ωp ⊗ p∗M [1] and L = M . In the former case we can
use the sequence

0→ L1 → E∨ → L2 → 0

and argue as above, i.e. we can set K = Op(−1) ⊗ Li ⊗M and L = Li ⊗M for
i = 1 or i = 2. Since χ(M) = deg(M)+ 1− g, we find in all three cases the bound
stated for χ(L).

Now assume that Rp∗(G) = 0, thus G ∈ T is a sheaf. If G ̸= 0, we may choose
a section j : C0 ↪→ W in the linear system |Op(1)|, such that j∗G ̸= 0.There is an
exact triangle

G→ G⊗Op(1)→ j∗Lj
∗(G⊗Op(1)

)
and, since Rp∗(G) = 0,

p∗
(
G⊗Op(1)

) ∼= p∗j∗Lj
∗(G⊗Op(1)

)
,

By Lemma 2.9, the latter surjects onto p∗j∗j∗
(
G⊗Op(1)

)
which is non-zero since

C0 is a section of p. Now apply the first part to G ⊗ Op(1) to obtain a non-zero
p∗L→ G⊗Op(1) and twist by Op(−1).
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2.7 Support (proof of Theorem 2.2)

Lemma 2.14. For all T ∈ T there are T ′, T ′′ ∈ T and an exact sequence

0→ T ′ → T → T ′′ → 0 ,

such that

(i) T ′ ∈ Coh≤1(X) and ι∗T ′ ∈ Coh0(W ),

(ii) supp(T ′′)red ⊂ W .

Proof. Let supp(T )red = Z ∪W ′ with W ′ ⊂ W , dim(Z) ≤ 1 and Z ∩W empty
or 0-dimensional. By a standard argument, we can find such a sequence with
suppred(T

′) ⊂ Z and suppred(T
′′) ⊂ W , see e.g. [43, Tag 01YD]. Then, T ′ ∈ T is

immediate from the definition and T ′′ ∈ T since T is closed under quotients.

The rest of this section concerns sheaves with set-theoretic support contained
in W . Given full subcategories Ci ⊂ Db(X) we denote by

〈
{Ci}i

〉
ex

the smallest
extension-closed subcategory of Db(X) containing each Ci.

Proposition 2.15. Let T ∈ T , F ∈ F , and B ⊂ W be a fiber of the projection p.
Then,

(i) If supp(T )red ⊂ W , then T ∈
〈
T ∩ ι∗Coh(W )

〉
ex

,

(ii) if supp(T )red ⊂ B, then T ∈
〈
T ∩ ι∗Coh(B)

〉
ex

,

(iii) F ∈
〈
F ∩ ι∗Coh(W )

〉
ex

,

(iv) if supp(F )red ⊂ B, then F ∈
〈
F ∩ ι∗Coh(B)

〉
ex

.

Proof of Proposition 2.15 (i), (ii). Let T ∈ T with supp(T )red ⊂ W , then there is
an exact sequence

0→ T ′ → T → ι∗ι
∗T → 0 ,

with T ′ a quotient of T ⊗OX(−W ). Note that ι∗ι∗T ∈ T as it is a quotient of T .
It follows from Lemma 2.11 that T ⊗OX(−W ) ∈ T , thus T ′ ∈ T . The sequence
implies chω(T ′) < chω(T ), see Notation 2.7. Since chω(T ) = 0 if and only if T = 0,
we conclude by induction.

The analogous argument proves (ii). By (i) we may consider sheaves ι∗G ∈ T
with supp(G)red ⊂ B. Let j : B ↪→ W , then we have an exact sequence

0→ G′ → G→ j∗j
∗G→ 0 ,

with G′ a quotient of G⊗OW (−B). Since ι∗
(
G⊗OW (−B)

)
∈ T we can conclude

as above.
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For the proofs of (iii) and (iv) we require the following results. Recall the
Notation 2.8.

Lemma 2.16. For all F ∈ F there are F ′, F ′′ ∈ F and an exact sequence

0→ F ′ → F → F ′′ → 0

such that

(i) F ′′ ∼= ι∗ι
∗F ′′,

(ii) R1p∗ι
∗F

∼−→ R1p∗ι
∗F ′′,

(iii) R1p∗(ι
∗F ′) < R1p∗(ι

∗F ).

Proof. Consider the restriction F ↠ ι∗ι
∗F and the decomposition

0→ T → ι∗ι
∗F → F ′′ → 0

obtained from the torsion pair (T ,F). Since F is closed under subobjects, we
obtain the desired sequence of sheaves in F . Property (i) follows since F ′′ is
a quotient of ι∗ι∗F . For (ii) note that ι∗F = ι∗ι∗ι

∗F and, as consequence of the
definition of the torsion pair (T ,F), the map ι∗ι∗F ↠ F ′′ induces an isomorphism
on R1p∗ι

∗.
For (iii) we consider the pullback Lι∗ of the sequence and apply Rp∗ to obtain

p∗Lι
∗F ′′ → R1p∗ι

∗F ′ → R1p∗ι
∗F → R1p∗ι

∗F ′′ → 0 .

The last map is an isomorphism, thus the first one must be surjective. By
Lemma 4.3, p∗ι∗F ′′ = 0 and by Lemma 2.9:

p∗Lι
∗F ′′ = R1p∗(Lι

−1F ′′) = R1p∗(ω
∨
W ⊗ ι∗F ′′) .

Lemma 2.11 together with (ii) implies (iii).

Lemma 2.17. For all ι∗G ∈ F supported on finitely many fibers of p, there exists
a fiber j : By ↪→ W and ι∗G′, ι∗G

′′ ∈ F and an exact sequence

0→ G′ → G→ G′′ → 0

such that

(i) G′′ ∼= j∗j
∗G′′,

(ii) R1p∗G⊗ k(y)
∼−→ R1p∗G

′′ ⊗ k(y),

(iii) R1p∗G
′ < R1p∗G.

Proof. The proof is parallel to the proof of Lemma 2.16.

Proof of Proposition 2.15 (iii), (iv). To prove (iii) we use Lemma 2.16 and induc-
tion to reduce to F ∈ F with R1p∗(ι

∗F ) = 0. But then F ∈ F ∩ T , thus F = 0.
The analogous argument proves (iv).

31



2.8 Zero-dimensional perverse sheaves (proof of Theorem 2.2)

We use a generating set of objects with extension closure A0 to prove Theo-
rem 2.2 (i).

Lemma 2.18. Denote the fibers of the projection by By = p−1(y), then

(i) A0 ∩ F [1] =
〈
{OBy(k)[1] : y ∈ C , k ≤ −2}

〉
ex

,

(ii) A0 ∩ T =
〈
Coh0(X) , {OBy(k) : y ∈ C , k ≥ −1}

〉
ex

.

Proof. By Proposition 2.15 (iv), A0 ∩ F [1] is the extension closure of shifted
sheaves G[1] supported on a single fiber j : By ↪→ W . Then p∗j∗G = 0 by
Lemma 4.3, thus decomposing G into a 0-dimensional sheaf and a sum of line
bundles we find that G is torsion-free and only line bundles OBy(k) with k ≤ −2
appear.

For (ii) use Lemma 2.14 and Proposition 2.15 (ii) to reduce to Coh0(X) and
sheaves supported on some j : By ↪→ W . Decomposing the latter into a sum of a
0-dimensional sheaf and line bundles OBy(k), we must have k ≥ −1.

Theorem 2.2 (i) now follows from Lemmas 2.4 and 2.18.

2.9 One-dimensional perverse sheaves (proof of Theorem 2.2)

Let F ∈ F . By Lemma 2.16 we may assume that F ∼= ι∗G is supported on W .
The proof of Lemma 4.3 showed that we have an injection

G ↪→ ωp ⊗ p∗V ,

where V = R1p∗G. Let T be the cokernel. The inclusion induces an isomorphism
on R1p∗(−), thus ι∗T ∈ T≤1. We have an exact triangle

T → G[1]→ ωp ⊗ p∗V [1] .

To prove Theorem 2.2 (ii) it suffices to consider sheaves in T≤1 and objects of the
form ι∗

(
ωp ⊗ p∗V

)
[1].

Recall the functor Φ: Db(C)→ Db(X) defined as

Φ(V ) = ι∗
(
Op(−1)⊗ p∗V

)
.

For any E ∈ Db(X) we have an exact triangle (∆)

E∨[2]→ ρ(E)→ Φ ◦ ΦR[1]
(
E∨[2]

)
.

We consider the long exact sequence of cohomology sheaves for the standard
t-structure associated to this triangle. Let Hi = Hi

(
ρ(E)

)
. Property (∗) is equiv-

alent to
H−1 ∈ F , H1 ∈ T ∩ A0 , Hi = 0 , i ̸= −1, 0, 1 .
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Lemma 2.19. Let V ∈ Coh(C), then

(i) ρ
(
ι∗
(
ωp ⊗ p∗V

)
[1]
)

satisfies Property (∗),

(ii) ρ
(
ι∗
(
Op(−1)⊗ p∗V

))
satisfies Property (∗).

Proof. Denote by E = ι∗
(
ωp ⊗ p∗V

)
[1], then

E∨[2] = ι∗
(
p∗(ωC ⊗ V ∨)

)
.

Note that V ∨ = RHom(V,OC) has cohomology sheaves

H0
(
V ∨) ∈ Coh1(C) , H1

(
V ∨) ∈ Coh0(C) , Hi

(
V ∨) = 0 , i ̸= 0, 1 .

Then, we find that

H0
(
E∨[2]

)
∈ T≤1 , H1

(
E∨[2]

)
∈ T≤1 ∩ A0 , Hi

(
E∨[2]

)
= 0 , i ̸= 0, 1 .

Direct computation yields

ΦR[1]
(
E∨[2]

)
= p∗

(
Op(1)

)
⊗ ωC ⊗ V ∨ ,

with cohomology sheaves

H0
(
Φ ◦ ΦR[1](E

∨[2])
)
∈ T≤1 , H1

(
Φ ◦ ΦR[1](E

∨[2])
)
∈ T≤1 ∩ A0 ,

Hi
(
Φ ◦ ΦR[1](E

∨[2])
)
= 0 , i ̸= 0, 1 .

Together this proves (i). For (ii) let E = Φ(V ), then

E∨[2] = ι∗
(
Op(−1)⊗ p∗(ωC ⊗ det(E∨)⊗ V ∨)

)
[1] = Φ

(
Ṽ [1]

)
,

where Ṽ = ωC ⊗ det(E∨) ⊗ V ∨. Using ΦR ◦ Φ ∼= id ⊕ωC [−2] we obtain a split
exact triangle

ρ(E)→ Φ
(
Ṽ [2] + ωC ⊗ Ṽ

)
→ Φ(Ṽ )[2] .

Thus, ρ
(
E
) ∼= Φ

(
ωC ⊗ Ṽ

)
, which satisfies

H0
(
Φ(ωC ⊗ Ṽ )

)
∈ T≤1 , H1

(
Φ(ωC ⊗ Ṽ )

)
∈ T≤1 ∩ A0 ,

Hi
(
Φ(ωC ⊗ Ṽ )

)
= 0 , i ̸= 0, 1 .

Proposition 2.20. For all E ∈ Coh≤1(X) ∩ T the image ρ(E) satisfies Prop-
erty (∗).
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Proof. We decompose E with respect to the torsion pair (A0,A1) of A≤1. The A0

part is covered by Theorem 2.2 (i). Thus, assume

E ∈ Coh≤1(X) ∩ T ∩ A1 ,

in particular E ∈ Coh1(X). We apply Lemma 2.14 to E. First assume that
ι∗E ∈ Coh0(W ). It follows from purity of E that Lι∗E = ι∗E. Dualizing, we have
E∨[2] ∈ Coh1(X) ∩ A1 and

Lι∗
(
E∨[2]

)
= ι∗

(
E∨[2]

)
∈ Coh0(W ) .

We have the exact triangle (∆)

E∨[2]→ ρ(E)→ Φ ◦ ΦR[1]
(
E∨[2]

)
.

The left and right objects are sheaves in T≤1, thus ρ(E) ∈ T≤1 as well.
It remains to prove Property (∗) for sheaves E = ι∗G ∈ Coh1(X). Let Hi =

Hi
(
ρ(E)

)
, we must prove that

H−1 ∈ F , H1 ∈ T ∩ A0 , Hi = 0 , i ̸= −1, 0, 1 .

Note that Rp∗(Lι∗E∨[2]) = p∗(Lι
∗E∨[2]) lies in D[−1,0](C), thus

Hi
(
Φ ◦ ΦR[1](E

∨[2])
)
= 0 , i ̸= −1, 0 .

Thus, in fact Hi = 0 for i ̸= −1, 0 from the long exact sequence. We must argue
that H−1 ∈ F . Note that E∨[2] = ι∗(G

∨ ⊗ ωW [1]). We have an exact sequence of
sheaves

0→ H−1 → Op(−1)⊗ p∗p∗
(
G∨ ⊗ ωW [1]⊗Op(1)

)
→ ι∗(G

∨ ⊗ ωW [1]) .

Let L ∈ Pic(C) be a line bundle. Since Rp∗OW = OC we have

Hom
(
Op(−1)⊗ p∗L,Op(−1)⊗ p∗p∗

(
G∨ ⊗ ωW [1]⊗Op(1)

))
∼= Hom

(
L, p∗

(
G∨ ⊗ ωW [1]⊗Op(1)

))
∼= Hom

(
Op(−1)⊗ p∗L, ι∗(G∨ ⊗ ωW [1])

)
.

Thus,
Hom

(
Op(−1)⊗ p∗L,H−1

)
= 0 ,

and H−1 ∈ F by Lemma 2.12.
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Lemma 2.21.
T≤1 =

〈
Coh≤1(X) ∩ T ,Φ

(
Coh1(C)

)〉
ex
.

Proof. The inclusion “⊃" is immediate. By Lemma 2.14 and Proposition 2.15
we know that T≤1 is the extension closure of sheaves T ∈ Coh≤1(X) with ι∗T ∈
Coh0(W ) and pushforwards ι∗(G) ∈ T≤1. Thus, it suffices to consider sheaves T =
ι∗G. Let

T0 → T → T1

be the decomposition in A with respect to the torsion pair (A0 ,A1). Since T ∈
Coh(X) we have Hom(F [1], T ) = 0, thus

T0 ∈ Coh(X) ∩ A0 = T0 .

This category is closed under quotients. Thus, replacing T0 by its image, we may
assume that T0 → T is an injection of sheaves. It follows that T1 ∈ Coh(X)∩A1 =
T1. We have T0 ⊂ Coh≤1 ∩ T , thus we may assume ι∗G ∈ T1.

By Lemma 2.12 there is a line bundle L and a non-zero morphism

Op(−1)⊗ p∗L→ G .

Taking the image and cokernel of this map, we obtain an exact sequence of sheaves
in T≤1

0→ ι∗G
′ → ι∗G→ ι∗G

′′ → 0 ,

such that 0 ̸= ι∗(G
′) ∈ A1. If

Op(−1)⊗ p∗L↠ G′

is an isomorphism, then ι∗G′ ∈ Φ
(
Coh1(C)

)
. Otherwise, G′ has dimension at most

one. By Proposition 4.3 (i) we have6 ℓ(ι∗G
′) > 0, thus

ℓ(ι∗G) > ℓ(ι∗G
′′) ≥ 0 .

By Proposition 4.3 (iii) we have ℓ(ι∗G′′) = 0 if and only if ι∗G′′ ∈ A0, so we can
conclude by induction.

Proposition 2.22. For all T ∈ T≤1 the image ρ(T ) satisfies Property (∗).

Proof. Follows from Lemma 2.19, Proposition 2.20, and Lemma 2.21.
6Here we use ℓ(−) as defined in Section 4.2. The properties proved in Proposition 4.3 do not

depend on Lemma 2.21.

35



Proof of Theorem 2.2 (ii). The results of this section imply that for all E ∈ A the
image ρ(E) satisfies Property (∗). Let E ∈ A1 and Q ∈ A0. Then, ρ(Q) ∈ A0[−1]
by Theorem 2.2 (i) and, by purity of E,

Hom(ρ(E), Q[−1]) = Hom(ρ(Q)[1], E) = 0 .

Thus, ρ(E) ∈ A≤1. But then ρ(E) ∈ A1 because

Hom(Q, ρ(E)) = Hom(E, ρ(Q)) = 0 ,

since Homk(E,F ) = 0 for all E,F ∈ A and k < 0.

3 Hall algebras, pairs, and wall-crossing

3.1 Numerical Grothendieck groups

The numerical Grothendieck group N(X) is the Grothendieck group of Db(X)
modulo the Euler paring. We will tacitly use the injection into the even cohomology
via the Chern character. The class [E] ∈ N(X) is equivalently characterised by(

ch0(E), ch1(E), ch2(E), χ(E)
)
.

The numerical Grothendieck group admits a dimension filtration N≤k(X). For our
purposes, we define N≤k as the numerical Grothendieck group of A≤k. We will
only consider objects of perverse dimension ≤ 1. Explicitly,

N0 = Z · b⊕ Z · p , N≤1 = Z · w ⊕N≤1(X) ,

where b and w are the classes of a fiber resp. the divisor as introduced in Section 1.1
and N0(X) ∼= Z is spanned by the point class p. We also define N1 = N≤1/N0 and
we choose a splitting

N≤1 = N0 ⊕N1 .

An element α ∈ N≤1 can be written as

α = (γ, c) = (rw, β + jb, n)

where γ = (r, β) ∈ N1 and c = (j, n) ∈ N0.
We will consider various generating series of DT invariants using the Novikov

parameter z of Q[[N≤1]] and we use the notation

Q = zb , −q = zp , t = z[OX ] .

In particular, for α as above zα = zγ (−q)nQj.
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3.2 Hall algebra

We briefly recall the notion of Hall algebras following [50]. Let C ⊂ Db(X) be
the heart of a bounded t-structure. In our applications we use two different hearts:

C =
〈
Coh≥2[1],Coh≤1

〉
and C =

〈
A≥2[1],A≤1

〉
.

The first is used to define PT and BS invariants, the second is used to define pPT
invariants. Both of these hearts are open by [5, Lemma 4.1] so they satisfy the
technical hypothesis in [5, Appendix B], [6, Section 3].

The objects of C form an algebraic stack which we still denote by C and we
assume that it is an open substack of the stackM of objects{

E ∈ Db(X) : Ext<0(E,E) = 0
}
.

The Hall algebra H(C) is the Q-vector space generated by maps of algebraic stacks
[Z → C], where Z is an algebraic stack of finite type with affine stabilizers, modulo
some motivic relations described in [50].

The Hall algebra H(C) admits a product induced by extensions and, via carte-
sian products, is a module over K(St/C), the Grothendieck ring of stacks with
affine stabilizers. Equivalently,

K(St/C) = K(Var/C)[L−1, (Ln − 1)−1]

where L = [A1 → SpecC]. The decomposition

C =
∐

α∈N(X)

Cα

into numerical classes induces a decomposition of the Hall algebra

H(C) =
⊕
α

Hα(C).

The feature of most interest in the Hall algebra is the existence of the integra-
tion map. To state this we introduce two more definitions. We let Hreg(C) ⊂ H(C)
be the K(Var/C)[L−1]-submodule spanned by [Z → C] so that Z is a variety and

Hsc(C) = Hreg(C)/(L− 1)Hreg(C).

This has the structure of a Poisson algebra. The integration map maps Hsc(C) to
the Poisson torus

Q[N(X)] =
⊕

α∈N(X)

Qzα.

The Poisson torus has the structure of a Poisson algebra as well. Its bracket is
defined by

{zα, zα′} = (−1)χ(α,α′)χ(α, α′)zα+α′
.
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Theorem 3.1 ([50, Theorem 2.8]). There is a Poisson algebra homomorphism

I : Hsc(C)→ Q[N(X)]

such that if Z is a variety and f : Z → Cα ↪→ C then

I([Z
f→ C]) =

(∫
Z

f ∗νC

)
zα

where νC is the Behrend function on the stack C.

The Hall algebra can be enlarged to the graded pre-algebra Hgr(C) by defining
its generators to be [Z → X ] with Z being an algebraic stack with affine stabilizers
such that Zα is of finite type for every α ∈ N(X) (instead of asking that Z is
already of finite type). One can define analogous versions Hgr,reg(C), Hgr,sc(C).
The integration map extends to

I : Hgr,sc(C)→ Q{N(X)}.

3.3 Pairs

We consider various notions of stable objects in Db(X) and their associated
generating series. All of them are defined via a pair of subcategories (T ,F) of
either Coh≤1 or A≤1. We consider the categories

B =
〈
OX [1] ,Coh≤1

〉
, pB =

〈
OX [1] ,A≤1

〉
.

Definition 3.2 ([5, Definition 3.9]). An object P ∈ B or P ∈ pB is called a
(T ,F)-pair if

(i) rk(P ) = −1,

(ii) Hom(T, P ) = 0 for all T ∈ T ,

(iii) Hom(P, F ) = 0 for all F ∈ F .

The class of P is (−1, α) with α ∈ N≤1. The notion of (T ,F)-pairs for fixed α
defines a stack Pairs(T ,F)α which is of finite type in all of our applications and
defines an element in the Hall algebra (Lemmas 4.15, 4.19 and 5.1).

In Section 5 we consider BS and PT pairs which are defined in B. Sections 6
and 7 concern pairs defined in pB. The categories (T ,F) arise in two ways:

(i) As torsion pairs associated to a stability function, or
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(ii) in the passage of one torsion pair to another, i.e. when crossing a wall.

In the former case, the stability function is ν in Section 6 and ζ in Section 7. In
the latter case, given two torsion pairs (T±,F±) on different sides of a wall (and
sufficiently close to the wall), we consider (T+,F−). Joyce’s wall-crossing formula
yields the comparison between pairs on either side of the wall via semistable objects
on W = T− ∩ F+.

3.4 Joyce’s wall-crossing formula

Let (T±,F±) be two torsion pairs andW = T−∩F+ be as above. When all the
terms are defined, we have an identity in the Hall algebra

[W ] ∗ [Pairs(T−,F−)] = [Pairs(T+,F+)] ∗ [W ] .

The “no-poles” theorem by Joyce [22, Theorem 8.7] and Behrend-Ronagh [6,
Theorems 4, 5] tells us that in adequate conditions

(L− 1) log(W) ∈ Hgr,sc(C)

and, therefore,
w = I

(
(L− 1) log(W)

)
∈ Q{N(X)}

is well-defined. The conditions that guarantee this are the following:

(i) Wα is an algebraic stack of finite type,

(ii) W is closed under extensions and direct summands,

(iii) for every α ∈ N(X) there are finitely many ways to decompose α = α1 +
. . .+ αn such that Wαi

̸= ∅.

When all these conditions are satisfied (including the moduli of pairs defining
elements in the Hall algebra), we say that the pairs (T±,F±) are wall-crossing
material. When this happens, we have Joyce’s wall-crossing formula which we will
repeatedly use:

I
(
(L− 1)Pairs(T+,F+)

)
= exp

(
{w,−}

)
◦ I
(
(L− 1)Pairs(T−,F−)

)
.

3.5 Rational functions

In this paper we repeatedly encounter series expansions of rational functions

f ∈ Q(N0) = Q(q,Q) .
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The “direction” of the expansion will play an important role, especially in the
ζ-wall-crossing in Section 7. We make here precise what “direction” means.

Given a non-zero linear function L : N0 → R, we say that a set S ⊂ N0 is
L-bounded if for every M ∈ R, the set

#{c ∈ S : L(c) < M}

is finite. Given L, we can define a completion Q[N0]L of Q[N0] to be the set of
formal power series ∑

c∈N0

acz
c

such that {c : ac ̸= 0} is L-bounded. The product of power series is well-defined in
this completion. Given a rational function f = g/h with g, h ∈ Q[N0] = Q[q,Q],
we say that F ∈ Q[N0]L is the expansion of f with respect to L if hF = g in the
ring Q[N0]L.

We briefly go over the different choices of L used throughout the paper and
clarify the statements of our results. The series PTβ for usual stable pairs invari-
ants or BSβ for Bryan–Steinberg invariants (see Section 5) can be defined in the
completion Q[N0]L where

L(j, n) = j + ε n

for 0 < ε ≪ 1. The generating series of perverse stable pairs pPTγ is defined in
the completion Q[N0]d where

d(j, n) = 2n+ j.

In particular, the precise formulation of Theorem 1.2 is that pPTγ is the expansion
of the rational function fγ with respect to d. Theorem 1.3 is to be understood
in Q(q,Q): the left and right hand side are the expansions of the same rational
function in different directions.

This re-expansion in different directions is fundamental in Section 7. There, we
will introduce series pDTζ,(µ,∞)

γ that interpolate between each side of Theorem 1.3:
they will be the expansion of the same rational function fγ with respect to

Lµ(j, n) = 2n+ j +
j

µa0
.

Note that Lµ for µ ≫ 1 is equivalent to d and for µ ≪ 1 it is equivalent to the
linear function used for PT or BS.

4 Stability

We use three different stability functions to define stable pairs and study their
wall-crossing:

40



(i) For Bryan–Steinberg stable pairs in Section 5 we use

µA : Coh≤1(X) \ {0} → (−∞,+∞]× (−∞,+∞] .

(ii) For perverse stable pairs in Section 6 we use

ν : A≤1 \ {0} → (−∞,+∞] .

(iii) For the BS/pPT wall-crossing in Section 7 we use

ζ : A≤1 \ {0} → (−∞,+∞]× (−∞,+∞] .

We comment on (i) in Section 4.1. The necessary results about µA-stability were
proved by Bryan–Steinberg [11] and require only minor modification for our set-
ting. For (ii) we give full proofs in Sections 4.2, 4.3, and 4.5. We also observe in
Section 4.4 that A≤1 and ν-stability can be obtained from a weak stability con-
dition through a tilting process. Finally, for (iii) we can employ the techniques
used for (ii) in a similar way to study ζ-stability. We briefly comment on this in
Section 4.7.

4.1 Bryan–Steinberg stability

Let Y be the coarse moduli space of an orbifold Calabi–Yau 3-fold satisfying
the hard Lefschetz condition and let

π : X → Y

be the distinguished crepant resolution [9, 14]. Denote by H̃ ∈ Nef(X) the pullback
of an ample class on Y , and let ω ∈ Amp(X) be ample such that ω − H̃ is ample
as well. Bryan–Steinberg [11] introduce a function on Coh≤1(X) defined as

µπ(E) =

(
χ(E)

H̃ · ch2(E)
,

χ(E)

ω · ch2(E)

)
.

They are able to prove the necessary technical results [11, Theorem 38, Lemma
47, Lemma 51] which allow to employ Joyce’s Hall algebra machinery. We can use
the exact same pathway. Critically, we do not require a projection X → Y , the
existence of a nef class A ∈ Nef(X) as described in the condition (♢) suffices. We
then define µA by the same formula as µπ, replacing H̃ by A. The proofs in [11]
carry over to our setting where a projection π does not necessarily exist:
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Proposition 4.1 ([11]). The slope µA defines a stability condition on Coh≤1(X).
Moreover, the moduli stack of µA-semistable sheaves MµA

(β,n) is a finite type open
substack of the moduli stackM parametrizing perfect complexes E ∈ Db(X) with
Ext<0(E,E) = 0.

Proof. As we pointed out already, the proofs of Theorem 38 and Lemma 47 carry
over verbatim to show that µA is a stability condition and that the family of
sheaves inMµA

(β,n) is bounded. The fact thatMµA

(β,n) is a finite type open substack
ofM then follows from [45, Theorem 3.20].

4.2 Nironi stability

Recall the nef class A ∈ Nef(X) and a0 ∈ Z>0 such that ι∗A is numerically
equivalent to a0b. Let g be the genus of the curve C. For E ∈ A≤1 with(

ch1(E), ch2(E), χ(E)
)
=
(
rw, β, n

)
define the slope ν : A≤1 \ {0} → Q ∪ {+∞} as ν(E) =

d(E)

ℓ(E)
, where

d(E) = r(1− g) + 2n− 1

2
w · β ,

ℓ(E) = 2A · β + r a0 .

Note that for G ∈ Coh(W ), by Grothendieck–Riemann–Roch

A · ch2(ι∗G) = a0 rk(Rp∗G) .

In the crepant case, the class A can be taken as the pullback of an ample class
from the coarse moduli space Y and the stability matches the notion of Nironi’s
slope stability [36] on Coh≤1(Y).

Recall that Nironi’s slope stability is defined in the analogous way, using a
self-dual generating bundle V and the modified Hilbert polynomial

pE(k) = χ
(
V,E ⊗OX(A)

k
)
= ℓ(E) k + d(E) .

Our definition resembles this notion replacing V by the ρ-invariant K-theory class
of OX ⊕OX(W/2) and replacing the Euler pairing by the Mukai pairing.

Example 4.2. To illustrate ν for zero-dimensional perverse sheaves, consider a
skyscraper sheaf k(x) and the perverse sheaves OB(−2)[1] and OB(−1) supported
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on a fiber B = p−1(y). In the crepant case, these objects correspond to a non-
stacky point, and the stacky points O+

y and O−
y respectively [10, Section 4.3]. In

all three cases ℓ(−) = 0 and the computation for d(−) is

d(k(x)) = 0 + 2− 0 = 2 ,

d(OB(−2)[1]) = −d(OB(−2)) = −(0− 2 + 1) = 1 ,

d((OB(−1)) = 0 + 0 + 1 = 1 .

Proposition 4.3.

(i) For all T ∈ T≤1 set-theoretically supported on W we have ℓ(T ) ≥ 0, with
equality if and only if T ∈ T0.

(ii) For all F ∈ F≤1 we have ℓ(F ) ≤ 0, with equality if and only if F ∈ F0.

(iii) For all E ∈ A≤1 we have ℓ(E) ≥ 0, with equality if and only if E ∈ A0. In
that case, d(E) ≥ 0, with equality if and only if E = 0.

Proof. For (i) and (ii) we may apply Proposition 2.15 and assume that T and F
are scheme-theoretically supported on W , i.e. we consider pushforwards ι∗G with
G ∈ Coh(W ).

(i) Let ι∗G ∈ T≤1. Since R1p∗G = 0 we have rk(Rp∗G) ≥ 0, thus both
summands of ℓ(ι∗G) are non-negative, and ℓ(ι∗G) = 0 if and only if r = 0 and
A · ch2(ι∗G) = 0, thus ι∗G ∈ T0.

(ii) Let ι∗G ∈ F . We claim that r ≤ rk(R1p∗G). Let V = R1p∗G and consider
the map Rp∗G → V [−1] which lifts to G → ωp ⊗ p∗V . Let Ker and Im be the
kernel and image, i.e.

Ker→ G→ Im .

Since F is closed under subobjects, Ker ∈ F . Since Im ⊂ ωp ⊗ p∗V we have
p∗Im = 0. The isomorphism

R1p∗G ∼= V

factors through R1p∗Im. We find that R1p∗Ker = 0, thus

ι∗Ker ∈ F ∩ T = 0

and G ↪→ ωp ⊗ p∗V must be injecive, which implies r ≤ rk(R1p∗G) by comparing
ranks. Since p∗G = 0 by Lemma 4.3, this implies

ℓ(ι∗G) = −2a0 rk(R1p∗G) + r a0 ≤ −a0 rk(R1p∗F ) ≤ 0 .

From this we get ℓ(ι∗G) = 0 if and only if rk(R1p∗G) = 0 and then r = 0, thus
ι∗G ∈ F0.
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(iii) By Lemma 2.14, Proposition 2.15, and (i)-(ii) it remains to consider E ∈
Coh≤1(X) such that ι∗E ∈ Coh0(W ). Then, by condition (♢)

ℓ(E) = 2A · ch2(E) ≥ 0 ,

with equality if and only if ch2(E) ∈ Z≥0 · b. Since w · ch2(E) ≥ 0, whereas
w · b = −2, we must in fact have ch2(E) = 0, i.e. E is a 0-dimensional sheaf.

For the positivity of d(−) on A0 we may use Lemma 2.18. If E ∈ Coh0(X)
then d(E) = 2χ(E) ≥ 0. Moreover, we can compute directly

d(OB(k)) = 2k + 3 > 0 for k ≥ −1
d(OB(k)[1]) = −(2k + 3) > 0 for k ≤ −2.

Proposition 4.4. The slope ν defines a stability condition on A≤1:

(i) ν satisfies the see-saw property,

(ii) Harder–Narasimhan filtrations exist.

Proof. The proof of the see-saw property is standard, so it is enough to prove that
A≤1 is ν-Artinian.

Suppose that E1 ⊇ E2 ⊇ . . . in A≤1. Then ℓ(Ei) is a decreasing sequence
bounded below by 0, so it must stabilize. Thus, for large enough i the cone
C(Ei+1 → Ei) ∈ A must be in A0 so ν(Ei+1) ≤ ν(Ei).

Proposition 4.5. The slope ν satisfies

ν
(
ρ(E)

)
= −ν(E) , ν

(
E ⊗OX(A)

)
= ν(E) + 1 .

Proof. The equality ℓ
(
ρ(E)

)
= ℓ(E) is clear since A · b = 0. Using Proposition 2.6

and w · b = −2 we have

d
(
ρ(E)

)
= r(1− g)− 2n− 1

2
w ·
(
β + (w · β − (2− 2g)r) b

)
= −r(1− g)− 2n+

1

2
w · β = −d(E) .

For the second equality, a computation using A2 · w = 0 shows that

ℓ
(
E ⊗OX(A)

)
= ℓ(E) , d

(
E ⊗OX(A)

)
= d(E) + ℓ(E) .

Definition 4.6. An object E ∈ A≤1 is called ν-stable (resp. semistable), if for all
non-trivial subobjects F → E in A≤1 we have ν(F ) < ν(E) (resp. ν(F ) ≤ ν(E)).
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The following lemma will be useful in Section 4.6.

Lemma 4.7. Let L ∈ Pic(C), then

(i) ι∗
(
Op(−1)⊗ p∗L

)
is ν-stable of slope χ(L) + 1

2
deg(E) + 1− g,

(ii) ι∗
(
ωp ⊗ p∗L[1]

)
is ν-stable of slope χ(L).

Proof. Let E be the object in (i) or (ii). Note that ℓ(E) = 1 in both cases. From
the description of A0 in Lemma 2.4 we see that E is torsion-free in A≤1, i.e.
Hom(A0, E) = 0. Let

E ′ → E → E ′′

be an exact triangle in A≤1. Then ℓ(E ′) = 1 and ℓ(E ′′) = 0, therefore d(E ′′) ≥ 0
with equality if and only if E ′′ = 0. Thus, either ν(E ′) < ν(E) or E ′ = E. The
slope ν(E) is easily computed.

4.3 Curve classes

We denote by N eff
1 the image of A≤1 in N1. By Lemma 2.14 and Proposi-

tion 2.15, N eff
1 is the cone generated by classes [E] where E is from one of the

three sets

S1 =
{
E ∈ Coh≤1(X) : ι∗E ∈ Coh0(W )

}
,

S2 = T ∩ ι∗Coh(W ) ,

S3 =
(
F ∩ ι∗Coh(W )

)
[1] .

Let ∆ ⊂ N eff
1 be the cone generated by classes form S2 and S3.

Lemma 4.8. For any l > 0, the set

{γ ∈ ∆ : ℓ(γ) ≤ l}

is finite.

Proof. It suffices to prove the claim for classes [E] with E from either set S2 or
S3. Consider ι∗G ∈ S2. Recall that ℓ(ι∗G) = a0 (2rk(Rp∗G) + r) and, because
ι∗G ∈ T , we have rk(Rp∗G) = rk(p∗G) ≥ 0. So there are only finitely many
possibilities for r and for A · ch2(ι∗G). Since N1(W ) has rank 2, the map

N1(W )Q /Q · b
A·−→ Q

is an isomorphism, showing that there are finitely many possibilities for ch2(ι∗G)
in N1(X)/Z · b.
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The argument for S3 is similar to S2. Indeed, for ι∗G[1] ∈ S3 Lemma 4.3 (ii)
implies that

−A · ch2(ι∗(G)) = −a0rk(Rp∗G) = a0rk(R
1p∗G)

is bounded (recall that p∗G = 0 by Lemma 2.10 (i)), so again there are finitely
many possibilities for both A · ch2(ι∗G) and r.

We say that a decomposition γ =
∑
γi is effective if all γi ∈ N eff

1 .

Corollary 4.9. There are only finitely many effective decompositions of γ ∈ N eff
1 .

Proof. Every effective decomposition of γ is a sum

γ = γ′ + γ′′

with γ′ ∈ N eff
1 a sum of classes from S1, and γ′′ ∈ ∆. In particular, γ′ is an

effective curve class and ℓ(γ′′) ≤ ℓ(γ). By Lemma 4.8 there are finitely many such
classes γ′′. By standard arguments [28, Corollary 1.19], there are finitely many
decompositions of γ′ into effective curve classes.

4.4 Weak stability

In this section we connect ν-stability to the notion of weak stability in the
sense of Toda [46]. We obtain an alternative description of the category A≤1. This
section does not contain any results which are strictly necessary for the remainder
of the paper and it rather serves as a comparison. In [41, 45] the authors study the
moduli problem for (weak) stability conditions on tilted hearts. They are able to
prove that the two key properties, generic flatness, and boundedness of semistable
objects are preserved, in some sense, under a tilting process

(Z, C)⇝ (Z†, C†) .

It seems likely that this technique can be employed to deduce the results in Sec-
tion 4.6, although we will not pursue it in this paper.

Let C≤1 = Coh≤1(X/W ) be the category of coherent sheaves which are at most
1-dimensional outside of W . This category was studied in [49] for Calabi–Yau
3-folds containing an embedded P2. The numerical K-group of C≤1 is the same as
that of A≤1

N0 = Z · b⊕ Z · p , N≤1 = Z · w ⊕N≤1(X) .

We can define a weak stability function Z = (Z0, Z1) associated to the filtration

0 ⊂ N0 ⊂ N≤1 .
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Let ω ∈ Amp(X) be an ample class. For E ∈ C≤1 define

Z1(E) = −ℓ(E) + i ω2 · ch1(E) ,

Z0(E) = −d(E) + i ω · ch2(E) .

Here, d(E) and ℓ(E) are as defined in Section 4.2. If [E] ∈ N0, set Z(E) = Z0(E),
otherwise Z(E) = Z1(E). Then, for all 0 ̸= E ∈ C≤1:

(i) Z(E) ∈ H ∪ R<0,

(ii) E admits a Harder–Narasimhan filtration.

Property (i) follows from condition (♢). Property (ii) holds because C≤1 is Noethe-
rian and the image of Z is discrete.7

Now we consider a tilting process

(Z, C≤1)⇝ (Z†, C†≤1) .

Define the generalized slope of 0 ̸= E ∈ C≤1 as

λ(E) = −ReZ(E)

ImZ(E)
∈ (−∞,∞] .

This leads to the standard construction of a torsion pair

Tλ =
〈
λ-semistable E ∈ C≤1 with λ(E) ≥ 0

〉
,

Fλ =
〈
λ-semistable E ∈ C≤1 with λ(E) < 0

〉
.

Define the tilt as
C†≤1 =

〈
Fλ[1], Tλ

〉
,

and the function
Z†(E) = −d(E) + i ℓ(E) .

Proposition 4.3 has two consequences. Firstly, the pair (Tλ ,Fλ) agrees with the
perverse torsion pair:

Tλ = T≤1 , Fλ = F .
In particular, A≤1 = C†≤1. Secondly, we have for all 0 ̸= E ∈ A≤1

Z†(E) ∈ H ∪ R<0 .

Harder–Narasimhan filtrations exist by Proposition 4.4. The associated slope
function of Z† is precisely ν. In particular, Z†-semistability coincides with ν-
semistability. Note that this resembles the standard way to interpret slope stabil-
ity on curves as Bridgeland stability [7, Example 5.4], [32]. We have obtained A≤1

and ν-stability through a tilting process from (Z, C≤1). We do not know if this fits
the general framework of tilting process established in [41].

7We have not checked the support property for Z. It might be possible to give a proof
following the arguments in the surface case [4, Section 4].
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4.5 Boundedness

In this section we prove some boundedness and finiteness results that will be
needed to ensure that the moduli stacks of ν-semistable sheaves are finite type,
see Proposition 4.15. This property is necessary for the application and analysis
of the wall-crossing formula and for the proof of rationality in Section 6. For
E ∈ A≤1 we denote by ν+(E), ν−(E) the maximal and minimal slopes of the
Harder–Narasimhan factors with respect to ν-stability. For I ⊂ R∪{+∞} denote
byMν(I) the stack of all E ∈ A≤1 such that all HN-factors have slope contained
in I. If I = [δ−, δ+], this is equivalent to ν+(E) ≤ δ+ and ν−(E) ≥ δ−. The
substack Mν

γ(I) parametrizes all such E with fixed [E] = γ ∈ N1. The special
case I = [δ, δ] parametrizes ν-semistable E of slope δ and is denotedMν

γ(δ). The
substack Mν

(γ,c) ⊂ Mν
γ(δ) corresponds to a fixed class (γ, c) ∈ N≤1. We write cE

to denote the class of [E] in N0.

Proposition 4.10. Let I ⊂ R be a bounded interval and E ∈ Mν
γ(I). There

exists a finite subset S ⊂ N0 depending on γ and I such that cE ∈ S, if one of the
following holds:

(i) E ∈ Coh≤1(X) with ι∗E ∈ Coh0(W ),

(ii) E ∼= ι∗ι
∗E.

Proof. (i) In the first case, ch2(E) ∈ N eff
1 (X) is an effective curve class with residue

γ ∈ N eff
1 . The class γ + jb is effective only for finitely many negative values of j.

On the other hand, note that for any E ∈ Coh≤1(X) with ι∗E ∈ Coh0(W ) we have
ch2(E) · w ≥ 0. If j ≫ 0, then w · (γ + jb) < 0, since w · b = −2. Thus, j must lie
in a bounded interval, so we have finitely many curve classes ch2(E). Recall that
by definition of ν(E) we have

χ(E) =
1

2

(
ℓ(E) · ν(E) + 1

2
w · ch2(E)

)
.

Since ν(E) ∈ I, also χ(E) lies in a bounded interval.
(ii) Let I ⊂ [δ−, δ+] and G = ι∗E. We first prove that χ(E) is bounded below.

For this we may assume χ(E) < 0. By Lemma 2.9 we have Rp∗(G) ∈ Coh(C) and
also

χ(E) = χ(G) = χ(Rp∗G) .

Let L ∈ Pic(C) with

rk(Rp∗G)(χ(L) + 1− g) > χ(G) .

We may choose χ(L) = χ(G) + g. Then by Riemann–Roch

0 ̸= H1(Rp∗G⊗ L∨ ⊗ ωC) = Hom(Rp∗G,L) .
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The latter is isomorphic to Hom(G,ωp⊗p∗L[1]) by adjunction. The object ι∗
(
ωp⊗

p∗L[1]
)

is stable by Lemma 4.7, with slope χ(L). Since ν−(E) ≥ δ−, we must have
χ(G) ≥ δ− − g.

Now we prove that χ(E) is bounded above. For this we may assume χ(E) > 0,
in particular Rp∗G ̸= 0. By Lemma 2.12 we obtain L ∈ Pic(C) with

k− +
χ(G)

max{rk(Rp∗G), 1}
≤ χ(L) ≤ k+ +

χ(G)

max{rk(Rp∗G), 1}

and a non-zero morphism K → G with

K = Op(−1)⊗ p∗L , or K = ωp ⊗ p∗L[1] .

The object ι∗K ∈ A≤1 is stable by Lemma 4.7, with slope

ν(ι∗K) = χ(L) +
1

2
deg(E) + 1− g , or ν(ι∗K) = χ(L) .

Since E ∈ Mν
γ(I) it follows that ν(K) ≤ δ+. But if χ(G) ≫ 0 we get χ(L) ≫ 0

(recall that a0rk(Rp∗G) = A · ch2(E) only depends on γ) and thus ν(K) ≫ 0, a
contradiction.

We conclude that χ(G) is bounded. By the same argument as in (i), since
ν(E) = d(E)/ℓ(E) ∈ I is also bounded we can show that there are only finitely
many possibilities for j in ch2(E) = β + jb, finishing the proof.

We can now prove the boundedness of certain families of objects in A≤1. The
underlying notion of sheaf of t-structures is established in [1] which we apply to
the heart of perverse t-structure A ⊂ Db(X). For a discussion of bounded families
see [45, Section 3]. We will repeatedly use the following useful result [45, Lemma
3.16] which relies on the finite dimensionality of Ext1-groups.

Lemma 4.11. Let Si be sets of objects in Db(X) for i = 1, 2, 3 such that S1, S2

are bounded. Assume that for any object E3 ∈ S3 there are Ei ∈ Si for i = 1, 2
and an exact triangle

E1 → E3 → E2 .

Then, S3 is also bounded.

First, we consider the family of zero-dimensional perverse sheaves.

Lemma 4.12. Let D ≥ 0 and S be the family of E ∈ A0 with
d(E) ≤ D. Then, S is a bounded family.
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Proof. By Lemma 2.18, every E ∈ A0 admits a quotient E → Q in A0 where Q is
one of the following objects:

k(x) , OBy(k − 1) , OBy(−k − 2)[1] .

Here, x ∈ X is a point, By = p−1(y) a fiber of p, and k ≥ 0. By Lemma 4.3 we
have 0 < d(Q) ≤ d(E), in particular 0 ≤ k ≤ d(E). The family of such objects Q
is bounded. We can conclude by induction and Lemma 4.11.

We can now prove the following result.

Proposition 4.13. Let I ⊂ R be a bounded interval and γ ∈ N1. Let S be one
of the following families of objects inMν

γ(I):

(i) the set of E ∈ Coh≤1(X) with ι∗E ∈ Coh0(W ),

(ii) the set of E ∼= ι∗ι
∗E.

Then, S is a bounded family.

Proof. (i) Let I ⊂ [δ−, δ+] and let ω ∈ Amp(X) be an ample class. We consider
ω-slope stability on Coh≤1(X) defined by

µω(E) =
χ(E)

ω · ch2(E)
.

By Proposition 4.10 (i), the set of curve classes ch2(E) for E ∈ S is finite, so we
can define

m− = min
E∈S

{1
2
w · ch2(E)

}
, m+ = max

E∈S

{1
2
w · ch2(E)

}
.

Let F ⊂ E be a subsheaf and E ↠ Q a quotient, then

χ(F ) ≤ 1

2

(
ℓ(F ) · δ+ +m+

)
,

χ(Q) ≥ 1

2

(
ℓ(Q) · δ− +m−

)
,

Recall that Coh0(X) ⊂ T0, thus E is torsion-free and ω ·ch2(F ) > 0. By Lemma 4.3
we have 0 ≤ ℓ(F ), ℓ(Q) ≤ ℓ(E) and so we obtain a bounded interval J (depending
only on γ and I) such that for all E as above, the HN-factors of E with respect to
µω-stabilty have slope contained in J . Boundedness of the family of such E now
follows from boundedness of µω-stability [20, Theorem 3.3.7].

(ii) Assume that E ∼= ι∗ι
∗E and denote by G = ι∗E. By Proposition 4.10 (ii)

the set of classes α = [E] ∈ N≤1 for E ∈ S is finite. Fix one such α. We use
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Lemma 2.12 to obtain L ∈ Pic(C) with χ(L) ≥ n(α) bounded below by some
n(α) ∈ Z determined from the class α ∈ N≤1. We have a non-zero morphism

K → G

such that K is either Op(−1) ⊗ p∗L or ωp ⊗ p∗L[1]. In both cases, K is stable
by Lemma 4.7. Let G′ be the image of this morphism in A≤1, thus we obtain an
exact triangle with pushforward in A≤1

G′ → G→ G′′ .

Note that Hom(A0, ι∗G) = 0 since ι∗G ∈ Mν
α(I) and I ⊂ R is finite. Thus,

ℓ(ι∗G
′) > 0 by Lemma 4.3. We can now bound the slopes of the HN-factors of G′

and G′′ as follows. There are obvious inequalities

ν+(ι∗G
′) ≤ ν+(ι∗G) , ν−(ι∗G

′′) ≥ ν−(ι∗G) .

Since G′ is a quotient of K, we get ν−(ι∗G′) ≥ ν(K), which is bounded below via
χ(L) ≥ n(α) and Lemma 4.7. Thus, d(ι∗G′) = ℓ(ι∗G

′)ν(ι∗G
′) lies in a bounded

interval determined by α and then the same is true for ι∗G′′. We can conclude
by induction on ℓ(ι∗G) and Lemma 4.11. The case ℓ(ι∗G) = 0 is covered by
Lemma 4.12.

4.6 Moduli stacks

The goal of this section is to explain the existence of finite type moduli spaces
of ν-semistable objects and stable pairs. The setup is as follows.

Let A = ⟨F [1], T ⟩ be the category of perverse sheaves defined in Section 2
as the tilt along the torsion pair (T ,F) of Coh(X). We consider another torsion
pair (T≤1,F ′) of Coh(X), where T≤1 = T ∩ A≤1 and F ′ = T ⊥

≤1. Define the tilt

Coh†(X) =
〈
F ′[1], T≤1

〉
.

Recall Lieblich’s [29] moduli stackM of objects E ∈ Db(X) with

Ext<0(E,E) = 0 .

The stackM is an Artin stack locally of finite type.

Lemma 4.14. The stacks of objects Obj(Coh†(X)) and Obj(A) define open sub-
stacks ofM.

Proof. In both cases, the heart is defined as a tilt along a torsion pair. The torsion
part is defined by the condition R1p∗Lι

∗ = 0, see Lemma 2.9. This an open
condition in families. The torsion-free part of the torsion pair is defined as the
orthogonal complement, which is an open condition as well. Then, also the tilt
defines an open substack [3, Theorem A.8].
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We consider stable pairs in the subcategory

pB =
〈
OX [1] ,A≤1

〉
⊂ Coh†(X) .

It follows from the argument in [46, Lemma 3.5, Lemma 3.8] that pB is a Noetherian
abelian category. Note that Coh†(X), however, is not Noetherian. Let Obj≥−1(pB)
be the substack of objects of rank ≥ −1, thus the rank is either −1 or 0.

Proposition 4.15. Let I ⊂ R be an interval, δ ∈ R, γ ∈ N1, and α ∈ N≤1, then

(i) Obj≥−1(pB) ⊂M is an open substack,

(ii) Mν
γ(I) ⊂ Obj(A≤1) is an open substack. If I is bounded,Mν

γ(I) is an Artin
stack of finite type,

(iii) Mν
α([δ,+∞]) andMν

α((−∞, δ]) are Artin stacks of finite type.

Proof. (i) By Lemma 4.14 it suffices to show that

Obj≥−1(pB) ⊂ Obj(Coh†(X))

is open. This can be proved in the same way as [49, Lemma 5.1]. An object
P ∈ Coh† of rank 0 (resp. −1) is contained in pB if and only if det(P ) = 0 (resp.
det(P ) ∼= OX) and H−1(P ) is torsion-free on X \W . The openness is proved using
a spectral sequence argument as in [46, Lemma 3.16].

(ii) We explain thatMν
γ(I) ⊂ Obj(A≤1) is open and that the family of objects

in Mν
γ(I) is bounded, if I is bounded. It follows that Mν

γ(I) is an Artin stack of
finite type [45, Lemma 3.4]. By Corollary 4.9, there are only finitely many effective
decompositions of γ in N eff

1 . Boundedness of the family of objects inMν
γ(I) then

follows from Lemma 2.14, Proposition 2.15, Proposition 4.10, Lemma 4.12 and
Proposition 4.13.

Openness can be obtained from arguments of Toda [45, 49] as follows. In [49]
he considers Calabi–Yau 3-folds X containing a divisor isomorphic to P2, and the
category of sheaves with at most 1-dimensional support outside of the divisor.
He studies objects in the tilt of this category along a torsion pair and proves
boundedness of the family of semistable objects [49, Proposition 5.2]. Openness
is deduced from boundedness as in [45, Theorem 3.20] and the same proof can be
used for ν-stability.

(iii) Suppose that E ∈Mν
α

(
[δ,+∞]

)
(the other case is analogous) and without

loss of generality δ < 0. Consider the decomposition

E0 → E → E1
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of E with respect to the torsion pair (A0,A1). Let γ ∈ N1 be the residue of α.
Then, E1 ∈ Mν

γ

(
[δ,+∞)

)
, so for any subobject E ′ → E1 in A we have either

ν(E ′) ≤ 0, or

ν(E ′) ≤ d(E ′) = d(E1)− d(E1/E
′) ≤ d(E)− ℓ(E1)δ

≤ d(α)− ℓ(α)δ,

thus E1 ∈Mν
γ

(
[δ,max{0, d(α)− ℓ(α)δ}]

)
is bounded. In particular, there are only

finitely many possibilities for d(E1) and hence finitely many possibilities for d(E0),
so the family of possible E0 is bounded by Lemma 4.12. Using Lemma 4.11 we
conclude (iii).

The next lemma will be useful in the combinatorical analysis of the wall-
crossing formula. Let A be the nef class of condition (♢). The restriction ι∗A
is numerically equivalent to a multiple of b, thus multiplication by A defines a
map

A · (−) : N≤1 → N0 .

Lemma 4.16 ([5, Proposition 7.1.(3)]). For any γ ∈ N1 the image of the set

{c ∈ N0 | Mν
(γ,c) ̸= ∅}

in the quotient
N0/Z(A · γ)

is finite.

Proof. The proof is the same as in [5], using Proposition 4.15.

4.7 Refined stability

Finally we introduce the last stability function that we’ll need. This stability
function ζ will be used for the BS/pPT wall-crossing and is the analog of [5,
Definition 8.1].

For E ∈ A≤1 \ {0} define the function

ζ(E) =
(
− r

ℓ(E)
, ν(E)

)
∈ (−∞,+∞]× (−∞,+∞] ,

where as before r ∈ Z such that ch1(E) = rw. If E ∈ A0 we set

ζ(E) = (+∞,+∞) .
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We give (−∞,+∞]× (−∞,+∞] the lexicographic order. For x, y ∈ (−∞,+∞]×
(−∞,+∞] we write [x, y] and ]x, y] for the set of all z with x ≤ z ≤ y resp.
x < z ≤ y. Note that the first component

ζ1(E) = −
r

ℓ(E)

only depends on the class of [E] in N1 = N≤1/N0. For γ ∈ N1 we will also write
ζ1(γ).

Proposition 4.17. The slope ζ defines a stability condition on A≤1.

Proof. The see-saw property is straightforward. To prove that A≤1 is ζ-Artinian,
the same strategy as in [5, Proposition 8.2] can be employed: by Corollary 4.9 it
is enough to show that A≤1 is ν-Artinian, which we did in Proposition 4.4.

Given a subset I ⊂ (−∞,+∞] × (−∞,+∞] we follow the notation of Sec-
tion 4.5, so e.g. Mζ(I) is the stack of E ∈ A≤1 such that all their ζ-HN-factors
are contained in I. To apply the wall-crossing formula to ζ-wall-crossing we will
need to prove that the stacksMζ(I) are open and (locally) of finite type.

For this, we recall the linear function Lµ : N0 → R defined by

Lµ(c) = Lµ(jb, n) = 2n+ j +
j

µa0
.

A set S ⊂ N0 is said to be Lµ-bounded if for each M ∈ R,

#{c ∈ S : Lµ(c) < M} <∞.

We say that a set of objects in A≤1 is Lµ-bounded if its image in N0 is Lµ-bounded.

Lemma 4.18 ([5, Lemma 8.14]). Given µ > 0, η1, η2 ∈ R and γ ∈ N1, the sets

Mν
γ

(
[η1,+∞]

)
∩Mζ

γ

(
](−∞,−∞), (µ, η2)]

)
and

Mν
γ

(
(−∞, η1]

)
∩Mζ

γ

(
[(µ, η2), (+∞,+∞)]

)
are Lµ-bounded.

Proof. See [5, Lemma 8.14].

Proposition 4.19. Let I ⊂ (−∞,+∞] × (−∞,+∞] be an interval, γ ∈ N1 and
(µ, η) ∈ R>0 × R.

(i) The stackMζ(I) ⊂ Obj(A≤1) is an open substack locally of finite type.
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(ii) The family of objects inMζ
γ(µ, η) is Lµ-bounded.

Proof. Given E ∈ Mζ
γ(µ, η) we consider its decomposition with respect to the

ν-HN-filtration
E≥η → E → E<η.

Then, both γ′ = [E≥η] ∈ N eff
1 and γ − γ′ ∈ N eff

1 , and we have

E≥η ∈Mν
γ′

(
[η,+∞]

)
∩Mζ

γ′

(
](−∞,−∞), (µ, η)]

)
.

By Corollary 4.9 there are finitely many such γ′, so by Lemma 4.18 the set of
possibilities for cE≥η

is Lµ-bounded. Similarly, the possibilities for cE<η are also
Lµ-bounded and (ii) immediately follows.

For (i), by [45, Theorem 3.20] it is again enough to show that the family of
semistable sheaves inMζ

(γ,c)(µ, η) is bounded. But using the decomposition above
we have cE≥η

+ cE<η = c, so there is a finite number of possibilities for both cE≥η

and cE<η . It then follows from Proposition 4.15 (iii) that the families of possible
E≥η, E<η are both bounded. By Lemma 4.11 we conclude that Mζ

(γ,c)(µ, η) is
bounded.

5 Bryan–Steinberg

In this section we introduce numerical invariants BSβ,n that naturally realize
the quotient

BSβ(q,Q) =
PTβ(q,Q)

PT0(q,Q)
.

The equation will be a wall-crossing formula between BS and PT invariants. When
X admits a contraction map X → Y as in Section 1.2 these invariants are precisely
Bryan–Steinberg invariants [11] of the crepant resolution. Roughly speaking they
count a modification of pairs OX → F where instead of requiring the cokernel to
have dimension zero we allow it to have support in some of the fibers B.

We define BS-pairs using a torsion pair of Coh≤1(X). Let

TBS =
{
T ∈ Coh≤1(X) : T|X\W ∈ Coh0(X \ W ) and Rp∗ι∗T ∈ Coh0(C)

}
.

One easily checks that TBS is closed under quotients and extensions (see [11, Lemma
13] for the case where a contraction exists). In fact, TBS coincides with a previously
defined subcategory:

TBS = T0 = A0 ∩ T .
Then, the orthogonal complement

FBS = {F ∈ Coh≤1(X) : Hom(TBS, F ) = 0}
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defines the torsion-free part of a torsion pair (TBS,FBS) of Coh≤1(X).
The same proof as given in [11, Lemma 51] can be used to write the torsion

pair (TBS,FBS) in terms of the stability condition µA introduced in Section 4.1:

TBS =MµA
([∞

2
,+∞

[)
, FBS =MµA

(]
−∞,∞

2

[)
,

where we used ∞
2

to denote

∞
2

= (+∞, 0) ∈ (−∞,+∞]× (−∞,+∞] .

The BS numerical invariants are defined as usual via the integration map I.
We denote by PairsBS the stack of (TBS,FBS)-pairs in the sense of Definition 3.2.
Then, we define BSβ,n ∈ Q by the equation

I
(
(L− 1)PairsBS

)
=
∑
n,β

BSn,β z
β (−q)n t−1 .

We also denote

BSβ(q,Q) =
∑
n,j∈Z

BSβ+jb,n (−q)nQj ∈ Q[[q±1, Q±1]] .

5.1 Wall-crossing between BS and PT

The wall-crossing between BS and PT invariants can be directly deduced from
the discussion in Section 3.4. Recall that the usual stable pairs are defined as pairs
with respect to the torsion pair

(TPT,FPT) =
(
Coh0(X),Coh1(X)

)
.

The technical conditions required in Section 3.4 are satisfied.

Proposition 5.1. The moduli PairsBS
(β,n) ⊂ M is an open substack of finite type.

Moreover, the pairs (TPT,FPT) and (TBS,FBS) are wall-crossing material.

Proof. The torsion pair (TPT,FPT) is clearly open. The torsion pair (TBS,FBS) is
also open thanks to the description in terms of µA stability and Proposition 4.1.
By [5, Proposition 4.6] it follows that PairsBS, Pairs(TPT,FBS) are open, locally of
finite type substacks ofM.

To show that the pairs are wall-crossing material remains to show that W =
FPT ∩ TBS satisfies conditions (i)-(iii) in Section 3.4. Conditions (i) and (ii) are
straightforward. For (iii), write αi = (βi, ni). If Wαi

̸= ∅ we must have βi = jib
for some ji ≥ 1 and ni ≥ 0, so it is clear that there are only finitely many such
decompositions.
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Joyce’s wall-crossing in Section 3.4 (or [5, Theorem 6.10]) now applies to show
that for every β ∈ N1(X)

PTβ(q,Q) = f(q,Q) BSβ(q,Q) , (2.2)

where f(q,Q) is defined by

f(q,Q) = I
(
(L− 1) log([W ])

)
∈ Q[[q,Q]]

andW = FPT∩TBS = Coh1(X)∩TBS. Note that f ∈ Q[[q,Q]] because the support
of sheaves in W ⊂ TBS is a finite union of finitely many points and fibers B. Note
also that f doesn’t depend on β, so we get the relation

PTβ(q,Q)

BSβ(q,Q)
=

PT0(q,Q)

BS0(q,Q)
.

Lemma 5.2. The only BS-pair of class (−1, 0, jb, n) is the trivial pair (OX → 0).
In particular

BS0(q,Q) = 1 .

Proof. The hypothesis of [5, Lemma 3.11], [46, Lemma 3.11 (ii)] applies to TBS,
showing that BS-pairs have the form (OX

s→ G) where G ∈ FBS and coker(s) ∈
TBS. Since Coh0(X) ⊂ TBS we have FBS ⊂ Coh1(X), so G is a pure 1-dimensional
sheaf. Since ch2(G) = jb, the reduced support of G is a finite union of fibers B.
Let Z be the subscheme of X determined by Ker(s) = IZ . We have an inclusion
OZ ↪→ G. The closed subspace underlying Z is a union of fibers B, so one easily
sees that OZ ∈ TBS. As G ∈ FBS it follows that G = 0.

As a consequence we get the key result of this section:

Proposition 5.3. We have

BSβ(q,Q) =
PTβ(q,Q)

PT0(q,Q)
.

We recall that PT0(q,Q) can be computed (for example by localization on KW ,
see appendix 8) and is equal to

PT0(q,Q) =
∏
j≥1

(1− qjQ)(2g−2)j .
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6 Perverse PT invariants

Consider the torsion pair (A0,A1) of A≤1 and recall the category

pB =
〈
OX [1] ,A≤1

〉
.

An object P ∈ pB is called perverse stable pair, if it is a (A0,A1)-pair in the sense
of Definition 3.2, i.e. rk(P ) = −1 and

Hom(A0, P ) = 0 = Hom(P,A1) .

The stack of perverse pairs is denoted by pPairs. Numerical invariants counting
perverse stable pairs are defined using the integration map I as explained in Section
3. For α ∈ N≤1 we let pPTα ∈ Q be the numerical invariants defined by

I
(
(L− 1) pPT

)
=
∑
(γ,j,n)

pPT(γ,j,n) z
γ (−q)nQj t−1 .

The fact that the integration map I can be applied to (L− 1) pPT is justified by
Lemmas 6.1 and 6.3.

In this section, we will provide a proof of the rationality and functional equation
of perverse stable pairs, Theorem 1.2.

6.1 Rationality via ν-wall-crossing

For δ ∈ R we introduce the torsion pair (Tν,δ,Fν,δ) on A≤1 by truncating the
ν-HN-filtation at δ:

Tν,δ =Mν
(
[δ,+∞]

)
= {E ∈ A≤1 : E ↠ Q ̸= 0⇒ ν(Q) ≥ δ} ,

Fν,δ =Mν
(
(−∞, δ)

)
= {E ∈ A≤1 : 0 ̸= S ↪→ E ⇒ ν(S) < δ} .

Here, E ↠ Q and S ↪→ E means quotient resp. subobject in A≤1. This family of
torsion pairs depending on δ will describe the wall-crossing which connects pPairs
(δ → +∞) and ρ(pPairs) (δ → −∞). We denote by Pairsν,δ the stack of (Tν,δ,Fν,δ)-
pairs as defined in Section 3.3. This stack admits a decomposition into connected
components according to the numerical class and we write Pairsν,δ(γ,c) for the stack
of pairs in class (−1, γ, c).

Lemma 6.1. Let δ ∈ R and (γ, c) ∈ N≤1. The stack Pairsν,δ(γ,c) is a finite type open
substack of Obj≥−1(pB).

Proof. An object P ∈ Obj≥−1(pB) is a (Tν,δ,Fν,δ)-pair if and only if three condi-
tions hold:
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(i) H0(P ) ∈ Tν,δ,

(ii) H0
(
ρ(P )

)
∈
〈
A0 , ρ(Fν,δ)

〉
,

(iii) H1
(
ρ(P )

)
= 0.

This characterization is parallel to the description of stable pairs (with respect
to torsion theories) in

〈
OX [1] ,Coh≤1(X)

〉
using the dualizing functor [5, Lemma

4.5]. Instead of the dualizing functor, we use the duality ρ and apply the same
proof as [5, Proposition 4.6]. The necessary properties of ρ are proven in Sec-
tion 2. The first and third properties are open by [5, Lemma 4.1], the second one
by Theorem 2.5 and Property (∗).

Applying the integration morphism in the Hall algebra produces numerical
invariants pDTν,δ

(γ,c) ∈ Q defined by

I
(
(L− 1)Pairsν,δ

)
=
∑
(γ,j,n)

pDTν,δ
(γ,j,n) z

γ (−q)nQj t−1 . (2.3)

Lemma 6.2 ([5, Proposition 7.6.(1)]). For any δ ∈ R and γ ∈ N1 the set

{c ∈ N0 : Pairs
ν,δ
(γ,c) ̸= 0}

is finite.

Proof. The proof is an easy adaptation of the proof of [5, Proposition 7.6.(1)].

In the limit δ → +∞ these invariants agree with the perverse PT invariants
previously defined.

Lemma 6.3. Let P ∈ pB be an object of class (−1, γ, c). For δ ≫ 0 (depending
on γ, c) we have

P ∈ Pairsν,δ if and only if P ∈ pPairs.

Proof. The proof is analogous to [5, Lemma 7.10].

We will now apply Joyce’s wall-crossing formula discussed in Section 3.4. The
next lemma states the technical conditions under which we can use the wall-
crossing formula.

Lemma 6.4. Let ε > 0 be sufficiently small. Then the torsion pairs (Tν,δ±ε,Fν,δ±ε)
are wall-crossing material.
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Proof. We begin by clarifying the statement and what we mean by sufficiently
small ε. Fixing l > 0, the moduli of semistable sheaves Mν

≤l(δ
′) with ℓ(E) ≤ l is

empty unless δ′ ∈ Wl =
1
l!
Z. Hence, by picking sufficiently small ε (depending on

l) the intersection
W = Tν,δ−ε ∩ Fν,δ+ε

restricted to objects with ℓ(E) ≤ l will be precisely Mν
≤l(δ). This will suffice for

the way we’ll write the wall-crossing formula.
Now for the actual proof. The stacks of pairs Pairsν,δ±ε define elements in

the (graded pre-)Hall algebra by Lemma 6.1. It is then enough to show that
W = Mν(δ) satisfies conditions (i)-(iii) of Section 3.4. Condition (ii) is obvious
and condition (i) is proven in Proposition 4.15. For (iii), let αi = (γi, ci). By
Corollary 4.9 there are finitely many possibilities for each γi. It also follows from
Proposition 4.15 that for fixed δ, γi there are only finitely many ci so thatMν

(γi,ci)
(δ)

is non-empty.

By the previous lemma, we can define the invariants Jν
α for α ∈ N≤1 by counting

semistable perverse sheaves with respect to the slope ν:

I
(
(L− 1) log (Mν(δ))

)
=
∑

ν(α)=δ

Jν
α z

α. (2.4)

The J-invariants are analogous to Toda’s N -invariants in the proof of the ratio-
nality of stable pairs generating functions.

The wall-crossing formula between pPT and pDTν,δ0 is

pPT≤l t
−1 =

 ∏
δ∈Wl∩[δ0,+∞)

exp
(
{J≤l(δ),−}

) pDTν,δ0
≤l t

−1. (2.5)

Here the subscript ≤ l means we’re restricting the generating functions to the
classes α ∈ N≤1 such that ℓ(α) ≤ l. Moreover,

Wl =
1

l!
Z

is the set of possible walls since ℓ(α) ≤ l implies ν(α) ∈ Wl.

Remark 6.5. In the wall-crossing formula (2.5) the wall-crossing terms interact,
i.e. {J(δ), J(δ′)} might be non-trivial. In the usual proof of rationality of PT
generating series or in the BS/PT wall-crossing this phenomenom doesn’t happen
because the wall-crossing terms are at most 1-dimensional, and χ vanishes when
restricted to Coh≤1 × Coh≤1. However, that’s no longer the case in A≤1 × A≤1

due to the presence of surface-like objects. In particular we don’t get a product
formula for wall-crossing similar to Proposition 5.3. The same phenomenon already
happens in [5].
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6.2 Combinatorics of the wall-crossing formula

Expanding the right-hand side of the wall-crossing formula (2.5) and extract-
ing the coefficient of zγ t−1 we get the following expression for the perverse PT
invariants in class γ ∈ N1. The generating series

pPTγ =
∑
j,n

pPT(γ,j,n) (−q)nQj =
∑

. . . (2.6)

is a sum over a set of choices described by an integer m ∈ Z≥0 and classes
α1, . . . , αi = (γi, ci), . . . , αm ∈ N≤1 and α′ = (γ′, c′) ∈ N≤1, satisfying the fol-
lowing conditions:

(i) γ = γ′ +
∑m

i=1 γi,

(ii) δ0 ≤ ν(α1) ≤ . . . ≤ ν(αm),

(iii) Jν
αi
̸= ∅,

(iv) pDTδ,ν
α′ ̸= ∅.

We now use the boundedness results to analyze this sum. First, conditions (iii)
and (iv) imply that γi, γ′ ∈ N eff

1 . Together with condition (i) and Corollary 4.9 it
follows that there is only a finite number of possibilities for γi, γ′. Lemma 6.2 also
tells us that there is only a finite number of possibilities for α′. Finally, Lemma 4.16
says that after we fix γ1, . . . , γm there are finitely many possibilities for the classes
κi = [ci] ∈ N0/Z(A · γi). Since twisting by OX(A) induces an isomorphism

Mν
(γi,ci)

∼=Mν
(γi,ci+A·γi) ,

it follows that Jν
(γi,ci)

depends only on γi and the class κi = [ci], so we write
Jν
(γi,κi)

= Jν
(γi,ci)

.
Due to the combinatorical factor in (2.6) we also introduce the set J tracking

which of the inequalities in (ii) are strict:

J =
{
i ∈ {1, . . . ,m− 1} : ν(αi) = ν(αi+1)

}
.

We group the terms in the right hand side of (2.6) in finitely many groups according
to the data ξ = ({γi}i, {κi}i, γ′, c′,J ). Since

ν(γi, ci + A · γi) = ν(γi, ci) + 1 ,

given a group ξ we can chose a minimal set of representatives c0i ∈ κi such that

δ0 ≤ ν(γ1, c
0
1) < δ0 + 1 , ν(γi, c

0
i ) ≤ ν(γi+1, c

0
i+1) < ν(γi, c

0
i ) + 1 .
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Then we organize equation (2.6) as

pPTγ =
∑
ξ

A(ξ)
∑

(k1,...,km)∈SJ

Bξ(k1, . . . , km) z
c′+

∑m
i=1(c

0
i+ki(A·γi)) (2.7)

where the first sum runs over the finitely many possible groups and the second
sum runs over the set

SJ =
{
(k1 ≤ . . . ≤ km) : ki = ki+1 ⇔ i ∈ J

}
.

Since Bξ is a quasi-polynomial of period 2, the rationality of pPTγ follows from [5,
Lemma 2.21].

6.3 Functional equation

After we have established the rationality part of Theorem 1.2, we turn to the
functional equation. For this, the duality ρ introduced in Section 2.3 plays a crucial
role.

Lemma 6.6. Let δ ∈ R \ Q. Then

ρ
(
Pairsν,δ

)
= Pairsν,−δ .

In particular,
pDTν,δ

α = pDTν,−δ
ρ(α) .

Proof. The lemma is proven exactly as in [5, Lemma 7.4], replacing Coh(Y) by
A and DY by ρ. The properties of ρ needed for the proof are Theorem 2.2 and
Proposition 4.5.

Lemma 6.7. Let γ ∈ N1. We have

lim
δ→−∞

deg
(
pPTγ − pDTν,δ

γ

)
= −∞.

Proof. We consider the wall-crossing equation (2.7) with δ = δ0. Note that the
terms in (2.7) withm = 0 (that is, in groups ξ = (∅, ∅, γ, c, ∅)) give precisely pDTν,δ

γ ,
so we may express the difference pPTγ − pDTν,δ

γ as the sum on the right-hand side
of (2.7) restricted to m ≥ 1. Thus we have

deg
(
pPTγ − pDTν,δ

γ

)
≤ max

ξ

(
d(c′) +

m∑
i=1

d(c0i )

)
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where the max is taken over the groups ξ with m ≥ 1. Summing d(γ) to both
sides

deg
(
pPTγ − pDTν,δ

γ

)
+ d(γ) ≤ max

ξ

(
d(γ′, c′) +

m∑
i=1

d(γi, c
0
i )

)
.

By the minimality of c0i we know that d(γi, c0i ) < δ0 + i, and therefore we get the
bound

deg
(
pPTγ − pDTν,δ

γ

)
+ d(γ) ≤ max

ξ

(
d(γ′, c′) +mδ0 +

m(m+ 1)

2

)
.

Now taking δ → −∞ gives the desired limit.

By Lemmas 6.3 and 6.6, for any α ∈ N≤1 and sufficiently small δ we have
pDTν,δ

α = pPTρ(α). Thus, we have

pDTν,−∞
α = lim

δ→−∞
pDTν,δ

α = lim
δ→+∞

pDTν,δ
ρ(α) =

pPTρ(α) .

Here, ρ(α) denotes the action on cohomology induced by ρ determined by Propo-
sition 2.6. One can write this action as ρ(γ, c) =

(
γ, ργ(c)

)
, where for each

γ = (rw, β) the involution ργ : N0 → N0 is

ργ(jb, n) =
(
(−j + w · β − (2− 2g)r)b,−n

)
.

We write the previous relation between pDTν,−∞ and pPT as an equality of
generating functions for γ ∈ N1:

pDTν,−∞
γ =

∑
c∈N0

pDTν,−∞
(γ,c) z

c =
∑
c∈N0

pPT(γ,ργ(c))z
c = ργ(

pPTγ) .

It follows that pDTν,−∞
γ is the expansion of a rational function in Q[q,Q]−d. On

the other hand, by Lemma 6.3

lim
δ→−∞

deg
(
pDTν,−∞

γ − pDTν,δ
γ

)
= −∞

and, together with Lemma 6.7, we have an equality of rational functions

pPTγ = pDTν,−∞
γ = ργ

(
pPTγ

)
.

This finishes the proof of Theorem 1.2.
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7 Bryan–Steinberg vs. perverse PT invariants

In this section we will prove the wall-crossing between the Bryan–Steinberg
invariants and perverse PT invariants. Together with the BS/PT wall-crossing of
Section 5, the output of this section is a proof of Theorem 1.3.

We will use the stability condition ζ defined in Section 4.7. The wall-crossing
is entirely analogous to [5, Section 8], where Bryan–Steinberg pairs are compared
to orbifold PT pairs to prove the crepant resolution conjecture. For us, matters
simplify and it is worth to point out how exactly.

The stability ζ leads to torsion pairs (Tζ,(µ,η),Fζ,(µ,η)) on A≤1 labelled by
(µ, η) ∈ R>0 × R. These are defined analogously to (Tν,δ,Fν,δ) in Section 6.1, by
truncating the ζ-HN-filtration. We consider the stack Pairsζ,(µ,η) of (Tζ,(µ,η),Fζ,(µ,η))
pairs in

pB =
〈
OX [1],A≤1

〉
in the sense of Definition 3.2.

Lemma 7.1. Let (µ, η) ∈ R>0 × R and (γ, c) ∈ N≤1.

(i) The stack Pairs
ζ,(µ,η)
(γ,c) ⊂ Obj≥−1(pB) is an open substack of finite type.

(ii) The family of objects in Pairsζ,(µ,η)γ is Lµ-bounded.

Proof. The same strategy of [5, Proposition 8.16] can be employed to prove the
result from Lemmas 4.18 and 6.1 and Proposition 4.19.

We define numerical invariants

pDTζ,(µ,η)
γ,c ∈ Q

as we did for pairs defined using ν in Section 6, see equation (2.3).
The notion of (µ, η)-pairs is locally constant. More precisely, for fixed γ ∈ N1

there is a finite set of possible walls Vγ such that stability is constant on(
R>0 \ Vγ

)
× R .

The limit 0 < µ ≪ 1 coincides with BS-pairs, the limit µ → +∞ coincides with
perverse stable pairs. Crossing a wall µ ∈ Vγ leads to a wall-crossing formula. This
wall-crossing is controlled in a concrete way. There is precisely one effective class
0 < γ′ ≤ γ characterized by Lµ(A · γ′) = 0, where as before

Lµ(j, n) = 2n+ j +
j

µ a0
.
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The asymmetry of n and j in this formula hints at how varying µ separates BS from
perverse PT (see Example 7.2 below). Recall that Lµ is the same linear function
introduced in Section 3 that controls the expansion of the rational function.

Then, to cross the µ-wall, it is possible to enter the wall from either sides
because for 0 < ε≪ 1 we have

Pairsζ,(µ±ε,η) = Pairsζ,(µ,±∞) .

The wall-crossing inside {µ} ×R is similar to the ν-wall-crossing in Section 6.
The combinatorics is controlled in the same way.

Example 7.2. We include an illustration of the wall-crossing for the limit µ→ 0+.
Let B ⊂ W be a P1-fiber of the projection. Since χ

(
OB(−1)

)
= 0, the class b of

the ruling is identified with the K-theory class [OB(−1)]. The linear function Lµ

specifies which classes in N0 are considered effective. Recall the structure sheaves
k(x) of points in X and the perverse sheaves OB(−1) and OB(−2)[1] in A0. Their
K-theory classes are[

k(x)
]
= p ,

[
OB(−1)

]
= b ,

[
OB(−2)[1]

]
= p− b .

Both p and b satisfy Lµ > 0 for all µ > 0, i.e. both classes are considered effective
at all times. In contrast to that, the class of OB(−2)[1] (considered effective for
perverse stable pairs) satisfies

Lµ(p− b) > 0 , µ > 1 ,

Lµ(p− b) < 0 , 0 < µ≪ 1 .

The limit µ→ 0+ serves the purpose to exclude all such perverse sheaves (two-term
complexes in A0) from being considered effective.

b
p

p− b

µ → 0+

N0
∼= Z2
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The picture displays two lines {Lµ = 0} in N0
∼= Z2. For µ ≫ 1 (green dotted

line) the class p − b is effective, i.e. contained in {Lµ > 0}, for 0 < µ ≪ 1 (blue
dotted line) it is not.

7.1 Walls

Let γ ∈ N1. Define the set of possible walls

Vγ =
{
ζ1(γ

′) : 0 < γ′ ≤ γ
}
∩ R>0 .

The stack Pairsζ,(µ,η)γ is constant on
(
R>0 \ Vγ

)
× R.

In the following, when µ ∈
(
R>0 \ Vγ

)
we let η ∈ R arbitrary. Crossing a wall

µ ∈ Vγ is controlled by the linear function Lµ. The basic reason is the following
relation between Lµ and ζ1:

Lµ(A · γ) = d(A · γ)
(
1− ζ1(γ)

µ

)
.

Lemma 7.3. There is, up to scaling, a unique class γµ such that 0 < γµ ≤ γ and
Lµ(A · γµ) = 0. The class A · γµ ∈ N0 is uniquely characterized by this property.

Proof. The proof is a simplified version of [5, Lemma 8.21].8

Example 7.4. We illustrate the previous result for W ∼= P1 × P1 with projection
p : W → P1. Let B and C be a fiber resp. section of p and

b = [B] , c = [C]

their classes in N1. Consider the class γ = c− b ∈ N1. It is an effective class:

γ =
[
OW (−2C −B)[1]

]
+
[
OW (−C − 2B)

]
.

The two objects are contained in F [1] and T≤1 respectively and the sum gives rise
to the effective decomposition

γ = (−w, c) + (w,−b) .

Recall the line bundle A and ℓ(r, β) = 2A · β + r a0. We have

ζ1(OW (−2C −B)[1]) = − −1
2a0 − a0

=
1

a0

8In [5] the authors choose a very general ample class to define the stability ζ and function
Lµ. This choice is not necessary for our application because ch1(E) ∈ Z · w for all [E] ∈ N≤1

and ch2(E) ∈ Z · b for all [E] ∈ N0.
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and there is only one wall

Vγ =

{
1

a0

}
.

The unique class γµ is
[
OW (−2C −B)[1]

]
= (−w, c) and

A · γµ = (−a0 , a0) ∈ N0 .

The linear function Lµ uniquely specifies A · γµ as

Lµ′(A · γµ)


> 0 , µ′ > 1

a0
,

= 0 , µ′ = 1
a0
,

< 0 , µ′ < 1
a0
.

Correspondingly, the class A · γµ = a0
[
OB(−2)[1]

]
∈ N0 is considered effective in

the expansion of the rational function with respect to Lµ′ for µ′ > 1
a0

(pPT pairs),
whereas it is non-effective for µ′ < 1

a0
(BS-pairs).

7.2 Limit stability I

We identify the limit of (µ, η)-stability for 0 < µ≪ 1 with BS stability. First,
we can give an explicit description of the limit of the torsion pair for 0 < µ≪ 1.

Definition 7.5. We define the torsion pair (Tζ,0,Fζ,0) in A≤1 by

Tζ,0 =
{
E ∈ A≤1 : E ↠ Q⇒ Q ∈ A0 or ch1(Q) ∈ Z<0 · w

}
and the orthogonal complement Fζ,0 = T ⊥

ζ,0.

It is straightforward to see that the pair (Tζ,0,Fζ,0) is the limit of (Tζ,(µ,η),Fζ,(µ,η))
when µ becomes very small, in the following precise sense:

Lemma 7.6. Let P ∈ pB of class (−1, γ, c) and 0 < µ < minVγ. Then, P is a
(Tζ,0,Fζ,0) pair if and only if P is a (Tζ,(µ,η),Fζ,(µ,η)) pair.

Lemma 7.7. We have

Tζ,0 =
〈
F [1], T0

〉
ex

Fζ,0 = T1.

Proof. We begin by proving that
〈
F [1], T0

〉
ex
⊂ Tζ,0. We first note that we can

write
A≤1 =

〈
F [1], T≤1

〉
=
〈
F [1], T0, T1

〉
=
〈
⟨F [1], T0⟩ex, T1

〉
,
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so
〈
F [1], T0

〉
ex

is closed under quotients. Hence it is enough to show that if E ∈
F [1] or E ∈ T0 then E ∈ A0 or ch1(E) ∈ Z<0 · w. For T ∈ T0 this is clear. If
F [1] ∈ F [1] then ch1(F [1]) = rw with r ≤ 0 and equality if and only if F ∈
Coh≤1(X). So it remains to show that if F ∈ F and ch1(F ) = 0 then F ∈ F0, i.e.
F ∩ Coh≤1(X) = F0.

We let F ∈ F ∩ Coh≤1(X) and, by Lemma 2.14, may assume F is scheme-
theoretically supported on W . If there is a fiber B = p−1(y) such that supp(F )∩B
is 0-dimensional and non-empty then p∗F⊗k(y) ̸= 0 contradicting Lemma 2.10 (i).
Thus, supp(F ) is a finite union of fibers B, so F ∈ F0 proving the claim.

For the inclusion Tζ,0 ⊂
〈
F [1], T0

〉
ex

, let E ∈ Tζ,0 and consider the decomposi-
tion of E with respect to the torsion pair (F [1], T≤1) of A≤1:

0→ F [1]→ E → T → 0.

Since ch1(T ) ∈ Z≥0 · w, by the definition of Tζ,0 we have T ∈ T ∩ A0 = T0.
This finishes the proof of the first equality Tζ,0 =

〈
F [1], T0

〉
ex

. The second
equality follows from the first one by taking orthogonal complements in A≤1.

Recall that T0 = T ∩ A0 = TBS, so in particular TBS ⊂ Tζ,0. The key result of
this section is:

Proposition 7.8. Let P ∈ Db(X) be such that ch1(P ) = 0. Then P is a
(Tζ,0,Fζ,0)-pair if and only if P is a (TBS,FBS)-pair. In particular, for any β ∈
N1(X) and 0 < µ < minVβ we have

pDT
ζ,(µ,η)
β = BSβ .

Proof. We begin with the proof that if P is a (TBS,FBS)-pair then it is a (Tζ,0,Fζ,0)-
pair. If P is a BS-pair, by [5, Lemma 3.11], [46, Lemma 3.11 (ii)] we can write
P = (OX

s→ F ) with

F ∈ FBS , Q = coker(s) ∈ TBS = T0 ⊂ A≤1 .

We first prove that F ∈ A≤1, so P ∈ pB. If Z is the scheme-theoretical support of
F (which is a curve), we have the short exact sequence of sheaves

0→ OZ → F → Q→ 0.

Since both OZ and Q are contained in A≤1, which is closed under extensions, it
follows that F ∈ A≤1. Moreover for T ∈ Tζ,0

Hom(T, P ) = Hom(T, F ) = Hom(H0(T ), F ) = 0 .
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The last vanishing holds because H0(T ) ∈ T0 = TBS by Lemma 7.7 and F ∈ FBS.
Similarly, for G ∈ Fζ,0,

Hom(P,G) = Hom(Q,G) = 0

vanishes since Q ∈ TBS ⊂ Tζ,0. So we conclude that P is a (Tζ,0,Fζ,0)-pair.
We now assume that P is a (Tζ,0,Fζ,0)-pair with ch1(P ) = 0. Since

P ∈ pB =
〈
OX [1],F [1], T≤1

〉
,

H−1(P ) has rank 1, H0(P ) has rank 0, and Hi(P ) = 0 for i ̸= −1, 0. Moreover,
the torsion part T ↪→ H−1(P ) is in F , so T [1] ∈ F [1] ⊂ Tζ,0. By definition of
(Tζ,0,Fζ,0)-pair the composition

T [1] ↪→ H−1(P )[1]→ P

vanishes, forcing T to vanish. Thus H−1(P ) is torsion-free. By Lemma 7.7 we
have

H0(P ) ∈ Tζ,0 ∩ Coh(X) = T0 = TBS.

In particular it follows that

ch1

(
H−1(P )

)
= ch1

(
H0(P )

)
− ch1(P ) = 0.

Hence H−1(P ) is a torsion-free, rank 1 sheaf with trivial determinant, hence it is
an ideal sheaf H−1(P ) ∼= IC . So P fits in an exact triangle

IC [1]→ P → H0(P ).

Using the argument of [46, Lemma 3.11 (ii)] with the fact that

H1
(
X,H0(P )

)
= 0 ,

we get that P has the form P = (OX → F ). We already know that H0(P ) ∈ TBS

so it remains to show that F ∈ FBS (see [5, Remark 3.10]). For T ∈ TBS we have

Hom(T, F ) = Hom(T, P ) = 0

since T ∈ TBS ⊂ Tζ,0, and we’re done.

7.3 Limit stability II

We identify the limit of (µ, η)-stability for µ→∞ with pPT stability.
Lemma 7.9. Let P ∈ pB be of class (−1, γ, c) and µ > maxVγ. Then, P is a
perverse stable pair if and only if P is a (Tζ,(µ,η),Fζ,(µ,η)) pair. In particular, for
any γ ∈ N1 and µ > maxVγ we have

pDTζ,(µ,η)
γ = pPTγ .

Proof. The proof is analogous to [5, Lemma 8.20]: for such µ and E ∈ A≤1 with
[E] ≤ γ in N1, such that E ∈ Tζ,(µ,η), we must have E ∈ A0.
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7.4 Crossing a wall

Let µ ∈ Vγ. First, we show that we can enter the wall {µ}×R from either side
in the following sense.

Lemma 7.10. Let α ∈ N≤1 and 0 < ε≪ 1.

(i) For sufficiently large η ≫ 0

Pairsζ,(µ,η)α = Pairsζ,(µ+ε,η)
α ,

(ii) for sufficiently small η ≪ 0

Pairsζ,(µ,η)α = Pairsζ,(µ−ε,η)
α .

Proof. The proof is a simplified version of [5, Lemma 8.25].

We explain now the wall-crossing inside {µ} × R. Let cµ ∈ N0 be the unique
class of Lemma 7.3. For any c ∈ N0 define

pDT
ζ,(µ,η)
γ,c+Zcµ =

∑
k∈Z

pDT
ζ,(µ,η)
γ,c+kcµ

zc+kcµ ∈ Q[[Q±1, q±1]] .

We have used the Novikov parameter z to track both q and Q. By the previous
lemma, the notion of (µ, η)-pair is constant for η ≫ 0 (respectively η ≪ 0) and
fixed α ∈ N≤1. Thus, we can choose arbitrary η0 ∈ R and define the limit for
η → ±∞, which agrees with the generating series for (µ± ε, η0):

pDT
ζ,(µ,±∞)
γ,c+Zcµ = pDT

ζ,(µ±ε,η0)
γ,c+Zcµ .

Lemma 7.11. The two generating series pDT
ζ,(µ,±∞)
γ,c+Zcµ are the expansion of the

same rational function.

Proof. The combinatorics is the same as in Section 6.2, see also [5, Corollary 8.28].
The technical conditions to apply the wall-crossing formula are verified using

Proposition 4.19 and Lemma 7.1 in essentially the same way as we did in the proof
of Lemma 6.4. For condition (iii) of Section 3.4 we note that if

∑n
i=1 ci = c is

fixed and each ci belongs to a Lµ-bounded set, then there are only finitely many
possibilities for each ci.

The main result of this section is then a formal consequence.

Proposition 7.12. There exists a rational function fγ(q,Q) such that for all
µ ∈ Vγ the series pDTζ,(µ±ε,η)

γ are the expansion of fγ with respect to Lµ±ε.
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Proof. Let µ = maxVγ be the biggest wall and cµ ∈ N0 the class of Lemma 7.3.
By Lemma 7.10 and Section 7.3 the series pDTζ,(µ+ε,η)

γ agrees with perverse stable
pairs pPTγ and it is the expansion of a rational function fµ

γ as proven in Section 6.
Note that in the limit µ′ →∞ the linear function

Lµ′(c) = d(c) +
j

µ′ (a0)

agrees with d(−) in the sense that expansion of the rational function fµ
γ is the

same for Lµ′ and d.
The previous lemma says that the two series pDT

ζ,(µ,±∞)
γ,c+Zcµ agree as rational

function for each c ∈ N0. Their difference is a quasi-polynomial function in k.
Recall that, by definition of cµ, we have

Lµ+ε(cµ) > 0 , Lµ−ε(cµ) < 0 .

It is then a formal consequence [5, Lemma 2.22] that pDTζ,(µ−ε,η)
γ is the expansion

of the same rational function fµ
γ , with respect to Lµ−ε.

Since stability is constant on
(
R>0 \ Vγ

)
×R we can argue by induction on the

finite set of walls µ′ ∈ Vγ. In particular, we obtain the same rational function fγ
for each wall.

The limit of ζ-stability for 0 < µ≪ 1 was found to agree with BS stability in
Section 7.2 which, together with Section 5, concludes the proof of Theorem 1.3.

8 Gromov–Witten theory

In this section we assume the GW/PT correspondence for X. Let

R = C

[
Q±1,

(
1

1−Qj

)
j≥1

]
[u−1, u]]

and
Ra =

{
f ∈ R : f(Q, u) = Qaf(Q−1,−u)

}
.

More explicitly, elements of R are written as

f(u,Q) =
∑
s≥H

fs(Q)u
s

where fs(Q) are rational functions of the form

fs(Q) =
p(Q)∏

j(1−Qaj)
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with p(Q) a Laurent polynomial. Then f ∈ Ra if and only if

Qafs(Q
−1) = (−1)sfs(Q) .

Proposition 8.1. For all β ∈ N1(X), after the change of variables q = eiu we
have

pPTβ(e
iu, Q) ∈ Rw·β .

Proof. We prove first that pPTβ ∈ R. By Theorem 1.2 it holds that

pPTβ ∈ Q

[
q±1, Q±1,

(
1

1− qaQb

)
a,b≥0

]
.

Since clearly q±1, Q±1 ∈ R it suffices to show that 1
1−qaQb ∈ R, which follows from

the following simple computation:

1

1− eiauQb
=
∑
k≥0

eikauQkb =
∑
k,s≥0

us
(ia)s

s!
ksQkb

=
∑
s≥0

us
(ia)s

s!
Li−s(Q

b).

Since the polylogarithm Li−s(Q) is a rational function with denominator (1−Q)s+1

for s ≥ 0, the claim follows.
The rest of the Proposition follows from the functional equation part of Theo-

rem 1.2:
Qw·β pPTβ(q

−1, Q−1) = pPTβ(q,Q) .

After the change of variables q = eiu, it follows that pPTβ ∈ Rw·β.

Conjecture 8.2. The Proposition above still holds if we replace R by the smaller
ring

R = C
[
Q±1,

1

1−Q

]
[u−1, u]].

We now deal with PT0(q,Q). This requires that we exclude genus 0 and 1
terms. More precisely, define

P̃T0(q,Q) = PT0(q,Q) · exp
(
2− 2g

u2
Li3(Q) +

1− g
6

Li1(Q)

)
.

Proposition 8.3. After the change of variables q = eiu, one has

P̃T0(e
iu, Q) ∈ R0.
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Proof. We have

PT0(q,Q) = exp

(∑
k≥1

(2− 2g)(qQ)k

k(1− qk)2

)
.

Writing cs for the coefficients in the u-expansion of

(2− 2g)eiu

(1− eiu)2
=
∑
s≥−2

csu
s

one has the formula

PT0(q,Q) = exp

(∑
s≥−2

csu
sLi1−s(Q)

)
.

As easy inspection shows that c−2 = 2g − 2, c−1 = 0 = c1, and c0 = (g − 1)/6.
Thus, the definition of P̃T0 removes the first terms in the previous formula and
we find that

P̃T0(q,Q) = exp

(∑
s≥2

csu
sLi1−h(Q)

)
.

This concludes the proof since, for s ≥ 2, Li1−s(Q) is a rational function with
denominator (1−Q)s and satisfies the symmetry property

Li1−s(Q
−1) = (−1)sLi1−s(Q).

We provide now the proof of Corollary 1.4. We denote

P̃Tβ(q,Q) = PTβ(q,Q) · exp
(
2− 2g

u2
Li3(Q) +

1− g
6

Li1(Q)

)
.

By Theorem 1.3,

pPTβ(q,Q) P̃T0(q,Q) = P̃Tβ(q,Q) ,

so Propositions 8.1 and 8.3 together imply that P̃Tβ(q,Q) ∈ Rw·β. Hence the
generating function ∑

β∈N1(X)

P̃Tβ(q,Q) z
β

belongs to the ring

R =

 ∑
β∈N1(X)

fβ(q,Q) z
β : fβ ∈ Rw·β

 .
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Moreover, with the usual change of variable q = eiu, we have

exp

( ∑
(h,β)̸=(0,0),(1,0)

u2h−2zβ
∑
j∈Z

GWh,β+jbQ
j

)
=

∑
β∈N1(X)

P̃Tβ(q,Q) z
β ∈ R.

Taking the logarithm preserves R, finishing the proof of Corollary 1.4.

Local Hirzebruch surface

In this appendix we take a closer look at the non-compact Calabi–Yau 3-
fold KW associated to the Hirzebruch surface W = Fr. We use the topologi-
cal vertex to compute their enumerative invariants. In particular, we prove the
following strengthening of Corollary 1.4 in the local case:

Theorem 8.4. Let X = KW be a local Hirzebruch surface. For all h ∈ Z≥0 and
β ∈ H2(W,Z) such that (h, β) ̸= (0,mb) , (1,mb), the series∑

j∈Z

GWX
h,β+jbQ

j

is the expansion of a rational function fh,β(Q) of the form

fh,β(Q) =
ph,β(Q)

(1−Q)4(b·β)+2h−2
,

where ph,β is a Laurent polynomial. Moreover, fh,β satisfies the functional equation

fh,β(Q
−1) = Q−KW ·β fh,β(Q) .

In the theorem, the intersection products b ·β and KW ·β are taken in H∗(W ).
The canonical class is

KW = −2c− (2 + r)b ,

where c is the class of the torus-invariant section with non-positive self-intersection
c2 = −r.

Remark 8.5. The form of the rational function implies that if we fix k, h, r then
GW

KFr
h,mc+jb is a polynomial in j of degree 4m+ 2h− 3 for large enough j. In [23,

Equation 5.2] the authors predict the assymptotic behavior for h = 0:

GW
KFr
h=0,mc+jb ∼ γmj

4m−3

for some constant γm that doesn’t depend on r. The independence of r is not
difficult to see from our proof.
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8.1 Combinatorics of the 2-leg topological vertex

The local Hirzebruch surface KW is a toric non-compact Calabi–Yau 3-fold,
so its Pandharipande–Thomas invariants can be computed via the formalism of
the topological vertex. The 2-leg case of the topological vertex admits simple
combinatorical expressions, also known as Iqbal’s formula [21, 30, 52, 54]. We now
describe such formula.

Given a partition µ, we associate to it the Schur function sµ(x1, . . . , xn) (see
for example [31, I.3]). An explicit way to define sµ is the following:

sµ = det (hµi−i+j)1≤i,j≤N

where N ≥ ℓ(µ) and hk = hk(x1, . . . , xn) are the complete homogeneous polyno-
mials. We will often consider the specialization of sµ to the infinite set of variables
x = (1, q, q2, . . .). In this case the definition above is still valid with

hk(1, q, q
2, . . .) =

k∏
j=1

1

1− qj

for k ≥ 0 and hk = 0 for k < 0. An alternative way to write sµ(1, q, q2, . . .) is the
hook-content product formula

sµ(1, q, q
2, . . .) = qn(µ)

∏
□∈µ

1

1− qh(□)
.

In the formula, n(µ) =
∑ℓ(µ)

i=1 (i − 1)µi. Th product runs over boxes in the Young
diagram of µ and h(□) is the hook length.

Iqbal introduced W-functions that play a role in the 1-leg and 2-leg vertex
formulas. For a partition µ, it is defined as

Wµ(q) = (−1)|µ|qk(µ)/2+|µ|/2 sµ(1, q, q
2, . . .) ,

where

k(µ) =

ℓ(µ)∑
i=1

µi(µi − 2i+ 1) ∈ Z .

For two partitions µ, ν we define

Wµ,ν(q) = q|ν|/2Wµ(q) sν(q
µ1−1, qµ2−2, . . .) .

Although it is not apparent from this definition, we have symmetry in the two
partitions, i.e. Wµ,ν =Wν,µ [53, Theorem 5.1].
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We can now formulate Iqbal’s formula for the Gromov-Witten invariants of
local toric surfaces. Let W be a toric surface. Let

D1 , D2 , . . . , DN , DN+1 = D1

be the toric divisors in the order they appear in the moment polygon of W . Denote
sj = D2

j ∈ Z the self-intersection numbers.

Theorem 8.6 ([52, Theorem 1]). The partition function for the disconnected
Gromov–Witten invariants of KW is

ZKW =
∑

µ1,...,µN

N∏
j=1

(
(−1)sj |µj | qk(µj)sj/2Wµj ,µj+1

(q) z|µj |Dj

)
after the change of variables q = eiu.

Recall that under the change of variables q = eiu we have

ZKW = PTKW (q, z) =
∑
n,β

PTβ,n z
β (−q)n .

8.2 Iqbal’s formula for Hirzebruch surfaces

We specialize Theorem 8.6 to the case of the Hirzebruch surface W = Fr.
The homology H2(W,Z) is generated by two classes b and c where b is the fiber
class and c is the class of the torus-invariant section P1 ↪→ W with non-positive
self-intersection c2 = −r. The toric divisors of W are

D1 = b = D3 , D2 = c+ rb , D4 = c .

We denote by Q = zb and Qc = zc the Novikov variables, then

ZKW =
∑

µ1,...,µ4

(
qr(k(µ2)−k(µ4))Wµ1,µ2Wµ2,µ3Wµ3,µ4Wµ4,µ1 (2.8)

× ((−1)rQc)
|µ2|+|µ4|Q|µ1|+|µ3|+r|µ2|

)
=

∞∑
m=0

Qj
c(−1)rm

∑
|µ2|+|µ4|=m

(
qr(k(µ2)−k(µ4))Qr|µ2|

×
(∑

λ

Wµ2,λWµ4,λQ
|λ|
)2
)
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The sum appearing in the last line

Sµ,ν(q,Q) =
∑
λ

Wµλ(q)Wνλ(q)Q
|λ| ∈ Q((q,Q))

admits a nice closed formula [15, Proposition 1]. We give a proof which is a bit
more direct than the one in [15]. Let

pµ(q) =
∞∑
i=1

qµi−i =
q−ℓ(µ)

q − 1
+

ℓ(µ)∑
i=1

qµi−i .

Lemma 8.7 ([15, Proposition 1]). For any two partitions µ, ν we have the following
identity in Q((q,Q)):

Sµ,ν =WµWν exp

(
∞∑
k=1

pµ(q
k)pν(q

k)
(qQ)k

k

)
. (2.9)

Proof. Let xi = (qQ)1/2qµi−i, yj = (qQ)1/2qνj−j. Then

pµ(q
k) = (qQ)−k/2

∑
i≥1

xki = (qQF )
−k/2Pk(x) ,

where Pk(x) is the k-th power function. For a partition λ let

Pλ(x) =
∏

Pλi
(x) , mk = #{i : λi = k} , zλ =

∏
kmkmk! .

By expanding the exponential and cancelling WµWν on both sides, using

Wµ,λ = q|λ|/2Wµ sλ(q
µ1−1, qµ2−2, . . .) ,

we’re left to show∑
λ

(qQ)|λ|sλ(q
µ1−1, qµ2−2, . . .)sλ(q

ν1−1, qν2−2, . . .)

=
∑
λ

ℓ(λ)∏
k=1

1

mk!

(
Pk(x)Pk(y)

k

)mk

.

By the Cauchy identity [31, Eq. 4.3] the LHS is∏
i,j≥1

1

1− xiyj
,

and the RHS is ∑
λ

z−1
λ Pλ(x)Pλ(y) .

The two sides agree [31, Eq. 4.1, 4.3].
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8.3 Rationality of PTβ/PT0

We now give a quick proof of the rationality result in Theorem 1.1 in the local
case based on our computations. Equation (2.9) can also be written as an infinite
product formula in the following way. We can write

pµ(q)pν(q) =
1

(1− q)2
s∑

i=−s

ai q
i

for some s, ai ∈ Z≥0 depending on µ, η. Then,

Sµ,ν =WµWν

s∏
i=−s

(∏
j≥1

(1− qj+iQ)−j

)ai

.

Note in particular that taking the constant Q0
c coefficient in equation (2.8) we find

PT0(q,Q) = [Q0
c]Z

KW = S2
∅∅ =

∏
j≥1

(1− qjQ)−2j.

Since Wµ,Wν ∈ Q(q) and

s∑
i=−s

ai = 1 ,
s∑

i=−s

i ai = 0 ,

one can see that
Sµν

S∅∅
∈ Q(q,Q) .

Together with equation (2.8) it follows that

PTmc(q,Q)

PT0(q,Q)
= [Qm

c ]
ZKW

S2
∅∅
∈ Q(q,Q) .

8.4 Proof of Theorem 8.4

We give the proof of Theorem 8.4 based on the application of Iqbal’s formula
(2.8). We first remark that it is enough to prove the result when β = mc for some
m ≥ 0. Indeed, if β̃ = β + kb then the corresponding generating functions are
related by multiplication by Q−k and

b · β̃ = b · β , −KW · β̃ = −KW · β + 2k .
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We define a refinement Ra,b ⊂ Ra of the sets introduced in Section 8. Elements
of Ra,b are Laurent series of the form

f(Q, u) =
∑
s≥H

fs(Q)u
s

such that fs(Q) take the form

fs(Q) =
ps(Q)

(1−Q)b+s

and satisfy
Qafs(Q

−1) = (−1)sfs(Q).
For a Laurent series f(q,Q) in variables q,Q we say that f ∈ Ra,b if it is in Ra,b

after the change of variables q = eiu. We must show that

P̃Tmc(q,Q) ∈ R2m,(2+r)m ,

where P̃T is as defined in Section 8. We consider the u-expansion of the series

pµ(e
iu)pν(e

iu)eiu =
∞∑

s=−2

cµνs u
n .

The first few terms of the expansion are easily computed:

pµ(e
iu)pν(e

iu)eiu = −u−2 +

(
|µ|+ |ν| − 1

12

)
+
iu

2

(
k(µ) + k(ν)

)
+O(u2) .

Plugging the expansion into equation (2.9) we get

Sµ,ν =WµWν exp

(
∞∑

s=−2

cµνs u
sLi1−s(Q)

)
.

Defining now the modification

S̃µ,ν = Sµ,ν exp

(
1

u2
Li3(Q) +

1

12
Li1(Q)

)
we have the formula

S̃µ,ν = (1−Q)−(|µ|+|ν|)W̃µW̃ν exp

(
iu

4

(
k(µ) + k(ν)

)1 +Q

1−Q

)
× exp

(
∞∑
s=2

cµνs u
sLi1−s(Q)

)
.
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where
W̃µ(q) = q−

k(µ)
4 Wµ(q) = exp

(
iu

4
k(µ)

)
Wµ(q) .

We used the identities

Li1(Q) = − log(1−Q) , Li0(Q) =
Q

1−Q
.

For s ≥ 2, Li1−s(Q) is a rational function with denominator (1−Q)s and satisfies
the symmetry property

Li1−s(Q
−1) = (−1)sLi1−s(Q) .

Moreover, W̃ satisfies W̃(q) = W̃(1/q) (see [53, Proposition 5.1]) so we have, for
m = |µ|+ |ν|,

S̃µ,ν ∈ Rm,m .

We can now finish the proof of Theorem 8.4. From equation (2.8) we have

P̃Tmc(q,Q) = (−1)rm
∑

|µ2|+|µ4|=m

(
qr(k(µ2)−k(µ4))Qr|µ2|S̃2

µ2,µ4

)
.

We pair the (µ2, µ4) and (µ4, µ2) terms and note that

qr(k(µ2)−k(µ4))Qr|µ2| + qr(k(µ4)−k(µ2))Qr|µ4| ∈ R0,rm ,

therefore
P̃Tmc(q,Q) ∈ R2m,(2+r)m .
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Chapter 3
Curves on K3 surfaces in divisibility 2

Younghan Bae and Tim-Henrik Buelles

1 Introduction

Let S be a complex nonsingular projective K3 surface and β ∈ H2(S,Z) an
effective curve class. Gromov–Witten invariants of S are defined via intersection
theory on the moduli space M g,n(S, β) of stable maps from n-pointed genus g
curves to S. This moduli space comes with a virtual fundamental class. However,
the virtual class vanishes for β ̸= 0 so, instead, we use the reduced class1

[M g,n(S, β)]
red ∈ Ag+n

(
M g,n(S, β),Q

)
.

For integers ai ≥ 0 and cohomology classes γi ∈ H∗(S,Q) we define

〈
τa1(γ1) . . . τan(γn)

〉S
g, β

=

∫
[Mg,n(S, β)]red

n∏
i=1

ψai
i ∪ ev∗i (γi) ,

where evi : M g,n(S, β)→ S is the evaluation at i-th marking and ψi is the cotangent
class at the i-th marking. By the deformation invariance of the reduced class, the
invariant only depends on the norm ⟨β, β⟩ and the divisibility of the curve class β.

1.1 Quasimodularity

Gromov–Witten invariants of K3 surfaces for primitive curve classes are well-
understood since the seminal paper by Maulik, Pandharipande, and Thomas [29].
The invariants are coefficients of weakly holomorphic2 quasimodular forms with
pole of order at most one [29, Theorem 4]. For imprimitive curve classes, the
quasimodularity is conjectured with the level structure [29, Section 7.5].

1We will identify this class with its image under the cycle class map A∗ → H2∗.
2Weakly holomorphic means holomorphic on the upper half plane with possible pole at the

cusp i∞.
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The quasimodularity can be stated in a precise sense via elliptic K3 surfaces.
Let

π : S → P1

be an elliptic K3 surface with a section and denote by B,F ∈ H2(S,Z) the class
of the section resp. a fiber. For any m ≥ 1 one defines the descendent potential

Fg,m

(
τa1(γ1) . . . τan(γn)

)
=
∑
h≥0

〈
τa1(γ1) . . . τan(γn)

〉S
g,mB+hF

qh−m .

Note that this generating series involves curve classes mB + hF of different divis-
ibilities, bounded by m.

It is convenient to use the following homogenized insertions which will lead to
quasimodular forms of pure weight. Let 1 ∈ H0(S) and p ∈ H4(S) be the identity
resp. the point class. Denote

W = B + F ∈ H2(S)

and let
U = Q⟨F,W ⟩ ⊂ H2(S)

be the hyperbolic plane in H2(S) and let U⊥ ⊂ H2(S) be its orthogonal comple-
ment with respect to the intersection form. We only consider second cohomology
classes which are pure with respect to the decomposition

H2(S,Q) ∼= Q
〈
F
〉
⊕Q

〈
W
〉
⊕ U⊥ .

Following [8, Section 4.6], define a modified degree function deg by

deg(γ) =


2 if γ = W or p ,
1 if γ ∈ U⊥ ,
0 if γ = F or 1 .

For m ≥ 1, consider the Hecke congruence subgroup of level m

Γ0(m) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod m

}
and let QMod(m) be the space of quasimodular forms for the congruence subgroup
Γ0(m) ⊂ SL2(Z). Let ∆(q) be the modular discriminant

∆(q) = q
∏
n≥1

(1− qn)24 .

Our first main result proves level two quasimodularity of Fg,2, previously conjec-
tured by Maulik, Pandharipande, and Thomas [29, Section 7.5].
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Theorem 1.1. Let γ1, . . . , γn ∈ H∗(S) be homogeneous on the modified degree
function deg. Then Fg,2 is the Fourier expansion of a quasimodular form

Fg,2

(
τa1(γ1) . . . τan(γn)

)
∈ 1

∆(q)2
QMod(2)

of weight 2g − 12 +
∑

i deg(γi) with pole at q = 0 of order at most 2.

1.2 Holomorphic anomaly equation

In the physics literature, the (conjectural) holomorphic anomaly equation [4, 5]
predicts hidden structures of the Gromov–Witten partition function associated to
Calabi–Yau varieties. For the past few years, there has been an extensive work to
prove the holomorphic anomaly equation in many cases: local P2 [26], the quintic
threefold [11, 16], K3 surface with primitive curve classes [33], elliptic fibration [34]
and P2 relative to a smooth cubic [6].

Every quasimodular form for Γ0(m) can be written uniquely as a polynomial in
C2 with coefficients which are modular forms for Γ0(m) [18, Proposition 1]. Here,

C2(q) = −
1

24
E2(q)

is the renormalized second Eisenstein series. Assuming quasimodularity, the holo-
morphic anomaly equation fixes the non-holomorphic parameter of the Gromov–
Witten partition function of K3 surfaces in terms of lower weight partition func-
tions: it computes the derivative of Fg,m with respect to the C2 variable. See
[33] for the proof of holomorphic anomaly equation for K3 surfaces with primitive
curve classes and [34] for the holomorphic anomaly equation associated to elliptic
fibrations.

Define an endomorphism [33, Section 0.6]

σ : H∗(S2)→ H∗(S2)

by the following assignments:
σ(γ ⊠ γ′) = 0

if γ or γ′ ∈ H0(S)⊕Q
〈
F
〉
⊕H4(S), and for α, α′ ∈ U⊥,

σ(W ⊠W ) = ∆U⊥ , σ(W ⊠ α) = −α⊠ F,
σ(α⊠W ) = −F ⊠ α, σ(α, α′) = ⟨α, α′⟩F ⊠ F ,

where ∆U⊥ denotes the diagonal class for the intersection pairing on U⊥. We will
view σ as the exterior product σ1 ⊠ σ2 via Künneth decomposition.
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Recall the virtual fundamental class for trivial curve classes which will play a
role for the holomorphic anomaly equation. For β = 0 we have an isomorphism

M g,n(S, 0) ∼= M g,n × S

and the virtual class is given by

[M g,n(S, 0)]
vir =


[M0,n × S] if g = 0 ,

c2(S) ∩ [M1,n × S] if g = 1 ,

0 if g ≥ 2 .

Also, consider the pullback under the morphism π : S → P1 of the diagonal class
of P1

∆P1 = 1⊠ F + F ⊠ 1 =
2∑

i=1

δi ⊠ δ
∨
i .

Define the generating series3

Hg,m

(
α; γ1, . . . , γn

)
(3.1)

= Fg−1,m

(
α; γ1, . . . , γn,∆P1

)
+ 2

∑
g=g1+g2

{1,...,n}=I1⊔I2
i∈{1,2}

Fg1,m

(
αI1 ; γI1 , δi

)
Fvir
g2

(
αI2 ; γI2 , δ

∨
i

)

− 2
n∑

i=1

Fg,m

(
αψi; γ1, . . . , γi−1, π

∗π∗γi, γi+1, . . . , γn
)

+
20

m

n∑
i=1

⟨γi, F ⟩Fg,m

(
α; γ1, . . . , γi−1, F, γi+1, . . . , γn

)
− 2

m

∑
i<j

Fg,m

(
α; γ1, . . . , σ1(γi, γj)︸ ︷︷ ︸

ith

, . . . , σ2(γi, γj)︸ ︷︷ ︸
jth

, . . . , γn
)
,

where Fvir denotes the generating series for virtual fundamental class. In most
cases this term vanishes. The equation takes almost the same form for arbitrary
m, only the last two terms acquire a factor of 1

m
. The appearance of these factors is

explained in Section 4, see also Example 4.2. We conjecture that the holomorphic
anomaly equation has the following form:

3Here, instead of descendent insertions we use a tautological class α ∈ R∗(Mg,n), see the
comment in Section 3.2
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Conjecture 1.2.

d

dC2

Fg,m

(
α; γ1, . . . , γn

)
= Hg,m

(
α; γ1, . . . , γn

)
. (3.2)

For primitive curve classes, the holomorphic anomaly equation is proven in
[33]. In higher divisiblity, it is precisely equation (3.2) that would be implied by
the conjectural multiple cover formula for imprimitve Gromow–Witten invariants
of K3 surfaces. We explain this in the following section. We prove Conjecture 1.2
unconditionally when m = 2:

Theorem 1.3. For any g ≥ 0,

d

dC2

Fg,2

(
α; γ1, . . . , γn

)
= Hg,2

(
α; γ1, . . . , γn

)
. (3.3)

1.3 Multiple cover formula

Motivated by the Katz–Klemm–Vafa (KKV) formula, Oberdieck and Pand-
haripande conjectured a formula which computes imprimitive invariants from the
primitive invariants:

Conjecture 1.4. ([32, Conjecture C2]) For a primitive curve class β,〈
τa1(γ1) . . . τan(γn)

〉
g,mβ

(3.4)

=
∑
d|m

d2g−3+deg
〈
τa1(φd,m(γ1)) . . . τan(φd,m(γn))

〉
g, φd,m(m

d
β) .

The invariants on the right hand side are with respect to primitive curve
classes4. Assuming this formula, we can deduce the holomorphic anomaly equa-
tion:

Proposition 1.5. Let m ≥ 1. Assume the multiple cover formula (3.4) holds
for all curve classes of divisibility d | m and all descendent insertions. Then the
holomorphic anomaly equation (3.2) holds.

Given this proposition, it seems a natural strategy to prove the multiple cover
formula in divisibility two and deduce, as a consequence, the holomorphic anomaly
equation. Indeed, our method does follow this logic for m = 2 and for low genus:
we verify the multiple cover formula for g ≤ 2, see Example 8.2. For higher genus,
however, our method does not seem suitable to achieve this. Instead, our proof
of Theorem 1.1 provides an algorithm, based on the degeneration to the normal

4Section 3 contains all relevant definitions.
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cone of a smooth elliptic fiber E ⊂ S, to reduce divisibility two invariants to low
genus invariants for which the multiple cover formula is known5. The degeneration
formula intertwines invariants of S with invariants of P1 ×E in a non-trivial way.
This phenomenon is illustrated in Example 8.2 for the genus 2 invariants〈

τ0(p)
2
〉
2, 2β

.

1.4 Hecke operator

In Section 3 we apply Conjecture 1.4 to an elliptic K3 surface to deduce a
conjectural multiple cover formula for the descendent potentials Fg,m. The multiple
cover formula for any divisibility m is then simply a Hecke operator of the wrong
weight acting on the primitive potential Fg,1. Indeed, the weight of Fg,1 (and
conjecturally of Fg,m) is 2g− 12+ deg, whereas the Hecke operator has the weight
of a descendent potential attached to elliptic curves, namely 2g − 2 + deg. This
operator can be expressed in terms of Hecke operators (of the correct weight) and
translation q 7→ qd. Together with the holomorphic anomaly equation for primitive
curve classes [33] this naturally leads to the above conjecture for the holomorphic
anomaly equation for higher divisibility.

1.5 Plan of the paper

We prove the quasimodularity and the holomorphic anomaly equation by in-
duction on the genus and the number of markings. In Section 2, we discuss Hecke
theory for weakly holomorphic quasimodular forms. This leads to a natural formu-
lation of the multiple cover formula in Section 3 and the imprimitive holomorphic
anomaly equation in Section 4. In Section 5, compatibility of the holomorphic
anomaly equation with the degeneration formula is presented. In Section 6, we
derive the multiple cover formula, which implies the holomorphic anomaly equa-
tion, for genus 0, genus 1 and some genus 2 decendent invariants from the KKV
formula. The genus 2 computation relies on double ramification relations with
target variety. This result serves as the initial condition for our induction. In
Section 7, we use previous results to prove Theorem 1.1 and 1.3. The property of
the top tautological group Rg−1(Mg,n) reduces higher genus cases to lower genus
invariants discussed in Section 6.

5The genus 0 and genus 1 cases are proved by Lee and Leung in [24, 25]. Their proof involves
a degeneration formula in symplectic geometry which is not possible in algebraic geometry. We
present an algebro-geometric approach using the KKV formula.
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2 Quasimodular forms and Hecke operators

We recall basic properties of quasimodular forms and Hecke operators, see [22,
39], in particular [22, pp. 156–163] and [22, Ch. 3, Section 3]. The Hecke theory for
weakly holomorphic quasimodular forms however seems to be less well documented.
We thus also include some proofs.

The following operators will play a central role. For any Laurent series

f(q) =
∞∑

n=−∞

anq
n (3.5)

and d ∈ Z>0 we define

Dqf = q
d

dq
f , Bdf =

∞∑
n=−∞

anq
dn , Udf =

∞∑
n=−∞

adnq
n .

We will apply these operators to the Laurent series associated to certain mod-
ular functions. For this we briefly review the definition of modular forms.

2.1 Quasimodular forms

Let H = {τ ∈ C | Im(τ) > 0} be the upper half-plane. The group GL+
2 (R) of

real 2× 2-matrices with positive determinant acts on H via

Aτ =
aτ + b

cτ + d
, A =

(
a b
c d

)
∈ GL+

2 (R) .

Let f : H→ C be a function and let

q = e2πiτ , y = Im(τ) .
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For k ∈ Z define the k-th slash operator

(f |kA)(τ) = det(A)k/2(cτ + d)−kf(Aτ) .

Definition 2.1. A quasimodular form of weight k for SL2(Z) is a holomorphic
function f : H→ C admitting a Fourier expansion

f(q) =
∞∑
n=0

anq
n , |q| < 1 , (3.6)

such that there exist p ≥ 0 and holomorphic functions fr, r = 0, . . . , p satisfying
the following conditions:

(i) the (non-holomorphic) function f̂ =
∑p

r=0 fry
−r satisfies the transformation

law
f̂ |kγ = f̂ for all γ ∈ SL2(Z) ,

(ii) f = f0,

(iii) each fr has an expansion of the form (3.6).

If p = 0 then f is called a modular form. We denote the space of modular resp.
quasimodular forms by Mod and QMod.

Remark 2.2. If f̂ =
∑p

r=0 fry
−r as above with fp ̸= 0, then each fr is a quasi-

modular form of weight k − 2r, see [39, Proposition 20]. Moreover, the last one,
i.e. fp is in fact modular (of weight k − 2p). The following structural results are
well-known [39, Proposition 4, Proposition 20]

Mod = C[C4, C6] , QMod = C[C2, C4, C6] ,

where
C2i(q) = −

B2i

2i · (2i)!
E2i(q)

is the renormalized 2i-th Eisenstein series. The notion (i) defines the space AHM of
almost holomorphic modular forms and the assignment f̂ 7→ f is an isomorphism

AHM→ QMod .

Under this map, differentiation with respect to 1
8πy

corresponds to differentiation
with respect to C2.

The modular functions considered in this paper will usually have poles at the
cusp τ = i∞ corresponding to q = 0. We will refer to these functions as weakly
holomorphic with pole of specified order. We want to clarify this terminology in
the context of quasimodular forms.
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Definition 2.3. A function f is said to be weakly holomorphic quasimodular with
pole of order at most m ≥ 0, if f satisfies the conditions in Definition 2.1 except
that each fr is allowed to have a pole at the cusp i∞ of order at most m. If p = 0
then f is called a weakly holomorphic modular form with pole of order at most m.

By parallel arguments as in [39, Proposition 20], the assertions in Remark 2.2
hold analogously for weakly holomorphic quasimodular forms. In particular, fp is
weakly holomorphic modular with pole of order at most m. The space of weakly
holomorphic modular forms is generated by 1

∆
over Mod, where

∆(q) = q
∏
n≥1

(1− qn)24

is the modular discriminant.6 As a consequence,

fp ∈
1

∆m
Mod

and since fp is of weight k − 2p (and there are no non-zero modular forms of
negative weight) we have k ≥ 2p− 12m.

For quasimodular forms we include the following observation.

Lemma 2.4. The space of weakly holomorphic quasimodular forms with pole of
order at most m is given by

1

∆m
QMod .

Proof. Let f be a weakly holomorphic form with pole of order at most m and
weight k and let

f̂ =

p∑
r=0

fry
−r ,

with f = f0. Multiplying by ∆m we have for all γ ∈ SL2(Z)

(∆mf̂)|k+12mγ = (∆m)|12mγ · (f̂)|kγ = ∆mf̂ .

Since each ∆mfr is holomorphic at i∞ this proves

f ∈ 1

∆m
QMod .

Analogous argument shows that the quotient of any quasimodular form by ∆m

defines a weakly holomorphic quasimodular form with pole of order at most m.
6See [14] where the authors examine an explicit basis of the space of weakly holomorphic

modular forms.
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2.2 Hecke operators

Let m ∈ N and consider the set of integral matrices of determinant m

Hm =

{(
a b
c d

)
| a, b, c, d ∈ Z , ad− bc = m

}
.

The modular group SL2(Z) acts on Hm by left multiplication. The classical Hecke
operators Tm acting on modular forms f of weight k are defined by [39, Section
4.1]

Tmf = mk/2−1
∑

γ∈SL2(Z)\Hm

f |kγ .

This definition is equivalent to [22, Ch. 3, Proposition 38]

Tm =
∑
ad=m

ak−1BaUd . (3.7)

The action of (3.7) naturally extends to the action of the q-expansion of weakly
holomorphic quasimodular forms. We prove that the action again defines a weakly
holomorphic quasimodular form. For simplicity (we will only use this case) we
restrict to the case when f has a pole of order at most one.

Lemma 2.5. Let f ∈ 1
∆
QMod be of weight k. Then Tmf is a weakly holomorphic

quasimodular form of weight k with pole of order at most m, i.e.

Tmf ∈
1

∆m
QMod .

Proof. In [31] it is shown that Tm defines a map QMod → QMod preserving the
weight. We briefly recall the key arguments for f ∈ QMod. The definition of
quasimodular forms is equivalent to the condition7

(f |kγ)(τ) =
p∑

r=0

(
c

cτ + d

)r

fr(τ) for all γ =

(
a b
c d

)
∈ SL2(Z) ,

where fr are as in Definition 2.1. Defining a modification of the slash operator for
quasimodular forms8

(f ||kA)(τ) =
p∑

r=0

(−c)r(cτ + d)r(fr|kA)(τ) for A =

(
a b
c d

)
∈ GL+

2 (R) ,

7This notion is called ‘differential modular form’ in [31]. As pointed out in [39, Section 5.3],
this notion is equivalent to be a quasimodular form.

8This definition differs from [31, Equation 12] by a factor m−p, where p is the depth of f .
Our definition of the Hecke operator differs by the same factor.
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then the quasimodularity is equivalent to

f ||kγ = f for all γ ∈ SL2(Z) .

This leads to a parallel treatment of Hecke operators as in the classical context of
modular forms. By [31, Proposition 2] we have

f ||k(γA) = f ||kA , for all γ ∈ SL2(Z) , A ∈ GL+
2 (R)

and we define
Tmf = mk/2−1

∑
A∈SL2(Z)\Hm

f ||kA .

This definition is then independent of a choice of representatives of SL2(Z)\Hm.
To conclude that Tmf is a quasimodular form, we would like to argue that it is
invariant under (−)||kγ for all γ ∈ SL2(Z). This statement, however, is not sen-
sible at the moment9 because the definition of (−)||kγ relies on the existence of
associated functions fr. This technicality is resolved in [31, Section 2.4, 2.5] by
considering a certain period domain P and identifying quasimodular forms as
holomorphic functions on P , which are left SL2(Z)-invariant and satisfy a trans-
formation property for a right action of the subgroup of upper triangular matrices.
The domain P is contained in GL2(C) and it contains the upper-half plane H. The
actions are given by left resp. right multiplication. The argument carries over to
weakly holomorphic quasimodular forms without change.

A particular set of representatives for SL2(Z) \Hm is given by{
γb =

(
a b
0 d

)
| a, d ∈ N, ad = m, 0 ≤ b < d

}
.

Note that (−)||kγb = (−)|kγb because the terms for r > 0 vanish. Since

Udf(τ) =
1

d

∑
0≤b<d

f

(
τ + b

d

)
,

we thus recover equation (3.7):

Tmf(τ) = mk/2−1
∑
ad=m
0≤b<d

d−kmk/2f

(
aτ + b

d

)

=
∑
ad=m

ak−1BaUdf(τ) .

9We are grateful to the referee for pointing out this subtle detail.
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For weakly holomorphic quasimodular forms f ∈ 1
∆
QMod we follow the same

proof. The difference here is that the functions fr are allowed to have simple poles
at i∞. The slash operator (−)||k however may turn a simple pole into a pole of
higher order. For (−)||kγb this order is bounded by m. As a consequence, Tmf is
weakly holomorphic quasimodular with pole of order at most m.

For our study of the multiple cover formula in Section 3 we will require a more
flexible notion, where the exponent is not necessarily related to the weight. The ac-
tion of this operator will preserve the weight of weakly holomorphic quasimodular
forms, it will, however, introduce poles and level structure.

Definition 2.6. For ℓ ∈ Z, we define

Tm,ℓ =
∑
ad=m

aℓ−1BaUd .

The operator Tm,ℓ is simply the m-th Hecke operator of weight ℓ, which we let
act on functions of weight k. By Möbius inversion we may rewrite each of them in
terms of the other (see [1, Section 2.7]). For this, let µ be the Möbius function.

Lemma 2.7. The action of Tm,ℓ on weakly holomorphic quasimodular forms of
weight k is given by

Tm,ℓ =
∑
ad=m

ck,ℓ(a)BaTd ,

where
ck,ℓ(a) =

∑
r|a

rℓ−1µ
(a
r

)(a
r

)k−1

.

Proof. The formula for ck,ℓ above can be rewritten as

ck,ℓ = Idℓ−1 ⋆ (µ · Idk−1) ,

where Idℓ−1(n) = nℓ−1 is the (ℓ − 1)-th power function and ⋆ denotes Dirichlet
convolution, i.e. for functions g, h we have

(g ⋆ h)(m) =
∑
ad=m

g(a)h(d) .

Note also that B is multiplicative with respect to composition, i.e. for e | a we
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have Ba = BeBa
e

and therefore

Tm,ℓ =
∑
ad=m

aℓ−1BaUd

=
∑
ad=m

(
Idℓ−1 ⋆ (µ · Idk−1) ⋆ Idk−1

)
(a)BaUd

=
∑
ad=m

∑
e|a

ck,ℓ(e)
(a
e

)k−1

BaUd

=
∑

uw=m

ck,ℓ(u)Bu

∑
v|w

vk−1BvUw
v


=
∑

uw=m

ck,ℓ(u)BuTw .

As a consequence we obtain the following result. Here, we let Mod(m) and
QMod(m) be the space of modular resp. quasimodular forms for the congruence
subgroup Γ0(m) ⊂ SL2(Z), see the introduction.

Proposition 2.8. Let f ∈ 1
∆
QMod be of weight k, then Tm,ℓf is a weakly holo-

morphic quasimodular of weight k with pole of order at most m for the congruence
subgroup Γ0(m) ⊂ SL2(Z)

Tm,ℓf ∈
1

∆m
QMod(m) .

Proof. We use the formula in Lemma 2.7 and treat each summand separately. By
Lemma 2.4 each Tdf satisfies

Tdf ∈
1

∆d
QMod .

The action of Ba raises q 7→ qa, or equivalently τ 7→ aτ , so it maps QMod to
QMod(a), see [22, Ch. 3, Proposition 17]. Therefore

BaTdf ∈
1

∆(qa)d
QMod(a) .

Finally, the weakly holomorphic modular form for Γ0(a) defined by

∆(q)a

∆(qa)
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is in fact holomorphic at i∞, i.e. contained in Mod(a). Hence the same is true for
its d-th power and we find

BaTdf ∈
1

∆m
QMod(a) .

which concludes the proof since QMod(a) ⊂ QMod(m).

For later reference, we list the following basic commutator relations between the
above operators acting on weakly holomorphic quasimodular forms f of weight k.
Recall, that the algebra QMod(m) is freely generated by the Eisenstein series C2

over the algebra Mod(m) of modular forms. Formal differentiation with respect to
C2 is therefore well-defined.

Lemma 2.9. Let d, e ∈ N and ℓ ∈ Z, then

(i) BdBe = Bde = BeBd ,

(ii) UdUe = Ude = UeUd ,

(iii) DqBd = dBdDq , UdDq = dDqUd ,

(iv) Tm,ℓ+2Dq = mDqTm,ℓ ,

(v) d
dC2

Tm,ℓ+2 = mTm,ℓ
d

dC2
,

(vi) [ d
dC2

,Dq] = −2k.

Proof. The proof for (i)-(iv) follows directly from the definition. For (v) one may
use that under the isomorphism f̂ 7→ f the differentiation d

dC2
corresponds to

differentiation with respect to 1
8πy

, see Remark 2.2. The statement (v) is then
checked as an identity of Laurent series in q with polynomial coefficients in y−1.
The commutator relation (vi) is well-known, see e.g. [39, Section 5.3].

3 Multiple cover formula

This section contains a discussion of the multiple cover formula. We start by
recalling the conjecture formulated in [32]. Then, we study the conjecture for the
descendent potentials associated to elliptic K3 surfaces. The result is expressed in
terms of Hecke operators. The discussion naturally leads to a candidate for the
holomorphic anomaly equation in higher divisibility. We conclude with a proof of
the multiple cover formula in fiber direction.
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3.1 Multiple cover formula

Let S be a nonsingular projective K3 surface, β ∈ H2(S,Z) be a primitive
effective curve class, m ∈ N and d | m be a divisor of m. The proposed formula
by Oberdieck and Pandharipande involves a choice of a real isometry

φd,m :
(
H2(S,R) , ⟨ , ⟩

)
→
(
H2(Sd,R) , ⟨ , ⟩

)
between two K3 surfaces such that

φd,m

(m
d
β
)
∈ H2(Sd,Z)

is a primitive effective curve class10. In [9] the second author proved that such an
isometry can always be found and Gromov–Witten invariants are in fact indepen-
dent of the choice of isometry.

Consider integers ai ∈ N, cohomology classes γi ∈ H∗(S,Q) and let deg =∑
deg(γi). Then, the conjectured multiple cover formula [32, Conjecture C2],

identical to Conjecture 1.4 in Section 1, is〈
τa1(γ1) . . . τan(γn)

〉
g,mβ

=
∑
d|m

d2g−3+deg
〈
τa1(φd,m(γ1)) . . . τan(φd,m(γn))

〉
g,φd,m(m

d
β) .

Let S be an elliptic K3 surface with a section11. The full (reduced) Gromov–
Witten theory of K3 surfaces is captured by S with curve class mB + hF via
standard deformation arguments using the Torelli theorem. In fact, the multiple
cover conjecture can be captured entirely via S as well: we may choose the same
Sd = S for any d dividing m and h. For l ∈ Q∗ we define

ϕl : H
∗(S,Q)→ H∗(S,Q)

acting on U = Q⟨F,W ⟩ as

ϕl(F ) =
1

l
F , ϕl(W ) = lW ,

and trivially on the orthogonal complement U⊥. For d | m and d | h we may
choose φd,m as ϕ d

m
:

ϕ d
m

(
m

d
B +

h

d
F

)
= B +

(
m(h−m)

d2
+ 1

)
F in H2(S,Z)

10We view curve classes also as cohomology classes under the natural isomorphism H2(S,Z) ∼=
H2(S,Z).

11Notations here are as in Section 1. In particular, we use the modified degree function deg.
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which is a primitive curve class.
Altering the curve class via the isometry ϕ therefore results in additional factors

of d
m

or m
d

while keeping the descendent insertions unchanged. This explains the
change in exponents

2g − 3 + deg←→ 2g − 3 + deg

and the factor mdeg−deg in the multiple cover formula below for the descendent
potential. We use the operator Tm,ℓ introduced in Definition 2.6. As pointed out
in Section 1.4, this is the m-th Hecke operator for functions of weight ℓ, which we
let act on Fg,1 (which has weight 2g− 12+deg). Before stating the conjecture, we
want to discuss the role of tautological classes and compatibility with respect to
restriction to boundary strata.

3.2 Compatibility I

We will find it convenient to use pullbacks of tautological classes from M g,n

instead of ψ-classes on M g,n(S, β). For 2g − 2 + n > 0, let

R∗(M g,n) ⊆ A∗(M g,n)

be the tautological ring ofM g,n. For a tautological class α ∈ R∗(M g,n), we consider
the invariants

〈
α; γ1, . . . , γn

〉
=

∫
[Mg,n(S,β)]red

π∗α ∪
n∏

i=1

ev∗i (γi) ,

where π : M g,n(S, β)→M g,n is the stabilization morphism. We write

Fg,m

(
α; γ1, . . . , γn

)
=
∑
h≥0

〈
α; γ1, . . . , γn

〉
g,mB+hF

qh−m

for the generating series in divisibility m. By the usual trading of cotangent line
classes, these generating series are related to the ones defined via cotangent classes
on M g,n(S, β). Any monomial in ψ- and κ-classes can be written, after adding
markings, as a product of ψ-classes. This procedure leaves deg and deg unchanged.
Before stating the multiple cover formula below, we explain the compatibility with
respect to restriction to boundary strata in M g,n(S, β).

A crucial point for this compatibility is the splitting behavior of the reduced
class. Consider the pullback of the boundary divisor

M g−1,n+2 →M g,n
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under the stabilization morphism π. Let α be the pushforward of a tautologi-
cal class (we will omit pushforwards in the notation below). By the restriction
property of the reduced class, we obtain

Fg,m

(
α; γ

)
= Fg−1,m

(
α; γ∆S

)
.

Then, the compatibility follows from two facts. Firstly, for the diagonal class ∆S

we have (
deg−deg

)
(∆S) = 0 ,

thus the factor mdeg−deg in Conjecture 3.1 below remains unchanged. Secondly,
we have deg(∆S) = 2 which precisely offsets the genus reduction from g to g − 1
in the formula

ℓ = 2g − 2 + deg .

Next, consider the pullback of the boundary divisor

M g1,n1+1 ×M g2,n2+1 →M g,n

under the stabilization morphism π. Let

α = α1 ⊠ α2 , {1, . . . , n} = I1 ∪ I2 , γ = γ1 ⊠ γ2

be the pushforward of the product of tautological classes, the splitting of markings,
and the splitting of the insertions respectively. The Künneth decomposition of the
class of the diagonal is denoted by

[∆S] =
∑
j

∆j ⊠∆j .

The splitting property implies that

Fg,m

(
α; γ

)
=

∑
m1+m2=m

∑
j

(
Fg1,m1

(
α1; γI1∆j

)
· Fvir

g2,m2

(
α1; γI1∆

j
)

+ Fvir
g1,m1

(
α1; γI1∆j

)
· Fg2,m2

(
α1; γI1∆

j
))

.

The virtual class for non-zero curve classes vanishes, thus the contribution Fvir is
a number. As a consequence, no non-trivial products of generating series appear
when we use boundary expressions. By similar consideration as above, using the
deg and deg for the diagonal class, we find that the multiple cover formula is
compatible with respect to this boundary divisor as well. We can now state the
multiple cover formula for the generating series with tautological classes:
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Conjecture 3.1. For deg-homogeneous γi ∈ H∗(S,Q),

Fg,m

(
α; γ1, . . . , γn

)
= mdeg−deg Tm,ℓ

(
Fg,1

(
α; γ1, . . . , γn

))
,

where deg =
∑

deg(γi), deg =
∑

deg(γi) and ℓ = 2g − 2 + deg.

Based on the discussion above, the same formula is conjectured for the potential

Fg,m

(
τa1(γ1) . . . τan(γn)

)
.

We now show that our presentation of the multiple cover formula is equivalent
to the original formula.

Lemma 3.2. Conjecture 1.4 for all d | m is equivalent to Conjecture 3.1 for m.

Proof. By the deformation invariance of the reduced class, the Gromov–Witten
invariants for arbitrary curve classes are fully captured by an elliptic K3 surface
with a section. The primitive curve classes are B + hF ∈ H2(S,Z). Taking the
coefficient of qmh−m in Conjecture 3.1 gives a multiple cover formula for the curve
class mB + mhF which matches the formula in Conjecture 1.4. It is the other
implication which we have to justify.

The generating series Fg,m involves curve classes mB + hF of different divis-
ibilities bounded by m. We apply Conjecture 1.4 to each invariant and use the
isometries ϕ. Note that each appearance of γi = F introduces a factor of m

d
, while

each appearance of γi = W gives d
m

. Moreover,

|{i | γi = F}| − |{i | γi = W}| = deg−deg ,

and therefore

Fg,m

(
α; γ1, . . . , γn

)
=
∑
h≥0

〈
α; γ1, . . . , γn

〉
g,mB+hF

qh−m

=
∑
h≥0

∑
d|m
d|h

d2g−3+deg
(m
d

)deg−deg 〈
α; γ1, . . . , γn

〉
g,B+(m(h−m)

d2
+1)F q

h−m

= mdeg−deg
∑
d|m

d2g−3+deg

(∑
h≥0

〈
α; γ1, . . . , γn

〉
g,B+(m

d
(h−m

d
)+1)F

(
qd
)h−m

d

)

= mdeg−deg
∑
d|m

d2g−3+deg

(
BdUm

d

∑
h≥0

〈
α; γ1, . . . , γn

〉
g,B+hF

qh−1

)
= mdeg−deg

∑
d|m

d2g−3+deg BdUm
d
Fg,1

(
α; γ1, . . . , γn

)
= mdeg−deg Tm,ℓ

(
Fg,1

(
α; γ1, . . . , γn

))
.
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As a direct consequence, the multiple cover formula implies level m quasimod-
ularity.

Proposition 3.3. If the generating series Fg,m satisfies the multiple cover formula,
it satisfies the quasimodularity conjecture. More precisely,

Fg,m ∈
1

∆(q)m
QMod(m) .

Proof. The descendent potentials for primitive curve classes are weakly holomor-
phic quasimodular with pole of order at most 1 and weight 2g− 12+ deg, see [29,
Theorem 4] and [8, Theorem 9]. The claim thus follows from Proposition 2.8.

3.3 Multiple cover formula in fiber direction

When the curve class is a multiple of the fiber class F , the multiple cover
formula reduces to a property of the Gromov–Witten invariant of elliptic curves.
Relevant properties are conjectured in [38].

Let S → P1 be an elliptic K3 surface with section and let β = mF . By
Section 7, Case 1, we may assume at least one of the insertions is the point class
γ1 = p and g ≥ 1. Let

ι : E ↪→ S

be the inclusion of a fiber, representing the class F . Since the point class is
represented by a transverse intersection of E and the section B, the Gromov–
Witten theory of S localizes to the Gromov–Witten theory of E with the curve
class mE. Computation of the obstruction bundle shows that the invariant is of
the form〈

τa1(p)τa2(γ2) . . . τan(γn)
〉S
g,mF

=
〈
λg−1; τa1(ω)τa2(ι

∗γ2) . . . τan(ι
∗γn)

〉E
g,mE

where λg−1 = cg−1(Eg). In particular, if γi ∈ Q
〈
F
〉
⊕ U⊥ ⊕ Q

〈
p
〉
, the invariant

vanishes. Consider the following generating series

FE
g

(
τa1(γ1) . . . τan(γn)

)
=
∑
m≥0

〈
λg−1; τa1(γ1) . . . τan(γn)

〉E
g,mE

qm

where γi = 1 or ω and
∑
ai +

∑
deg(γi) = g − 1 + n.

The generating series FE
g has a simple description in terms of Eisenstein series.

The following formula is conjectured in [38].

Lemma 3.4. For g ≥ 1,

FE
g

(
τg−1(ω)

)
=

g!

2g−1
C2g .
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Proof. In [38, Proposition 4.4.7] this formula is given under assuming the Vira-
soro constraint for P1 × E. The Virasoro constraint for any toric bundle over a
nonsingular variety which satisfies the Virasoro constraint is proven in [13]. Com-
bining this result with the Virasoro constraint for elliptic curves [35], the result
follows.

When β = mF , Conjecture 1.4 is equivalent to the following proposition.

Proposition 3.5. There exists c ∈ Q such that

FE
g

(
τa1(ω) . . . τar(ω)τar+1(1) . . . τar′ (1)

)
= cDr−1

q FE
g

(
τg−1(ω)

)
.

Proof. Boundary strata with a vertex of genus less than g do not contribute because
the invariants involve λh vanishes on M g,n(E,m) when h ≥ g. If r′ > r, then∑
ai ≥ g and we can reduce to the case when r′ = r by the topological recursion

on the ψ-monomial in R≥g(M g,n) [23]. If r′ = r, then
∑
ai = g − 1 and similar

argument as in Section 7, Case 3 can be applied. Therefore FE
g is proportional to

FE
g

(
τg−1(ω)τ0(ω)

r−1
)
= Dr−1

q FE
g

(
τg−1(ω)

)
where the equality comes from the divisor equation.

Remark 3.6. One can find a closed formula for the constant c ∈ Q by integrating
tautological classes on M g,n.

4 Holomorphic anomaly equation

This section contains a proof of Proposition 1.5. We derive the holomorphic
anomaly equation for m ≥ 1 from the conjectural multiple cover formula, such
that both are compatible12. It turns out that the equation is almost identical to
the one in the primitive case. Additional factors appear only in the last two terms,
which are specific to K3 surfaces. We refer to [34, Section 7.3] for explanations on
the appearance of these terms.

Proof of Proposition 1.5. Let γ1, . . . , γn ∈ H∗(S) with

deg =
∑
i

deg(γi) , deg =
∑
i

deg(γi) .

We will simply write γ to denote γ1, . . . , γn. Assume that the multiple cover
formula (3.4) holds for all divisors d | m and all descendent insertions. Using

12We should point out that this derivation should be lifted to the cycle-valued holomorphic
anomaly equation. Tautological classes play no role here.
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Lemma 3.2, also Conjecture 3.1 holds. By Proposition 3.3, the descendent poten-
tials are quasimodular forms of level m and we can consider the d

dC2
-derivative.

We apply the d
dC2

-derivative to Conjecture 3.1 and use the commutator relations
Lemma 2.9 to obtain:

d

dC2

Fg,m

(
α; γ

)
=

d

dC2

(
mdeg−degTm,2g−2+degFg,1

(
α; γ

))
= mdeg−deg+1Tm,2g−4+deg

d

dC2

Fg,1

(
α; γ

)
.

We want to explain that the last row precisely recovers the definition of Hg,m

in (3.1), after applying the holomorphic anomaly equation for the primitive se-
ries [33, Theorem 4]:

d

dC2

Fg,1

(
α; γ

)
= Hg,1

(
α; γ

)
.

We do so by explaining how each term of Hg,1

(
α; γ

)
is affected:

(i) The degree deg of Fg−1,1

(
α; γ∆P1

)
has increased by one. The genus, however,

dropped by 1. Thus, the first term precisely matches the multiple cover
formula, i.e.

Fg−1,m

(
α; γ∆P1

)
= mdeg−deg+1Tm,2g−4+deg

(
Fg−1,1

(
α; γ∆P1

))
.

(ii) The virtual class is non-zero only for curve class β = 0 and genus 0, 1, see
Section 1. In these cases, the potential Fvir

g2
is simply a number and the

operator Tm,ℓ acts non-trivially only on Fg1,m. We distinguish the two cases:

g2 = 0. The virtual class is given by the fundamental class and the integral
is given by intersection pairing on S. Non-trivial terms are obtained from
δ∨i = 1 or F . If δ∨i = 1 then

deg(γI2) = deg(γI2) = 2 .

The modified degree deg of Fg1,1

(
αI1 ; γI1δi

)
has decreased by 2, whereas deg

decreased by 1 (the insertion δi = F contributes deg = 1). The term thus
matches the multiple cover formula:

Fg1,m

(
αI1 ; γI1δi

)
= mdeg−deg+1Tm,2g−4+deg

(
Fg1,1

(
αI1 ; γI1δi

))
.

If δ∨i = F then
deg(γI2) = 1 , deg(γI2) = 2 .
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The modified degree deg of Fg1,1

(
αI1 ; γI1δi

)
has decreased by 2, whereas deg

decreased by 1. The term matches the multiple cover formula.

g2 = 1. The virtual class is given by c2(S) and the integral is given by
intersection pairing on S. Non-trivial terms are obtained only from δ∨i = 1
and

deg(γI2) = deg(γI2) = 0 .

Analogously to case (i), the degree deg of Fg1,1

(
αI1 ; γI1δi

)
has increased by

1, deg remained unchanged, and the genus dropped by 1. The term matches
the multiple cover formula.

(iii) The modified degree deg of Fg,1

(
αψi; γ1, . . . , π

∗π∗γi, . . . , γn
)

has decreased
by 2, whereas deg decreased by 1. Again we find that the term matches the
multiple cover formula

Fg,m

(
αψi; γ1, . . . , π

∗π∗γi, . . . , γn
)

= mdeg−deg+1Tm,2g−4+deg

(
Fg,1

(
αψi; γ1, . . . , π

∗π∗γi, . . . , γn
))
.

(iv) The degree of ⟨γi, F ⟩Fg,1

(
α; γ1, . . . , F, . . . , γn

)
remains unchanged, whereas

deg decreased by 2. An additional factor of 1
m

therefore appears:

1

m
⟨γi, F ⟩Fg,m

(
α; γ1, . . . , F, . . . , γn

)
= mdeg−deg+1Tm,2g−4+deg

(
⟨γi, F ⟩Fg,1

(
α; γ1, . . . , F, . . . , γn

))
.

(v) The term Fg,1

(
. . . , σ1(γi, γj), . . . , σ2(γi, γj), . . .

)
is similar to the previous

case: deg remains unchanged, whereas deg decreases by 2, giving rise to
an additional factor of 1

m
:

1

m
Fg,m

(
γ1, . . . , σ1(γi, γj), . . . , σ2(γi, γj), . . . , γn

)
= mdeg−deg+1Tm,2g−4+deg

(
Fg,1

(
γ1, . . . , σ1(γi, γj), . . . , σ2(γi, γj), . . . , γn

))
We arrive at the level m holomorphic anomaly equation (3.1) which appeared in
Section 1.
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4.1 Divisor equation

For primitive curve classes, it was pointed out in [33, Section 3.6, Case (i)]
that the holomorphic anomaly equation in genus 0 is compatible with the divisor
equation. For divisibility m, let

d

dγ
= ⟨γ, F ⟩Dq +m⟨γ,W ⟩ , γ ∈ H2(S) .

The divisor equation implies that

Fg,m

(
τa1(γ1) . . . τan−1(γn−1)τ0(γn)

)
=

d

dγn
Fg,m

(
τa1(γ1) . . . τan−1(γn−1)

)
+

n−1∑
i=1

Fg,m

(
τa1(γ1) . . . τai−1(γi ∪ γn) . . . τan−1(γn−1)

)
.

The compatibility with the divisor equation corresponds to

Hg,m

(
τa1(γ1) . . . τan−1(γn−1)τ0(γn)

)
(3.8)

=
d

dγn
Hg,m

(
τa1(γ1) . . . τan−1(γn−1)

)
− 2kFg,m

(
τa1(γ1) . . . τan−1(γn−1)

)
+

n−1∑
i=1

Hg,m

(
τa1(γ1) . . . τai−1(γi ∪ γn) . . . τan−1(γn−1)

)
,

where k is the weight of Fg,m

(
τa1(γ1) . . . τan−1(γn−1)

)
and we have used the com-

mutator relation [ d

dC2

,Dq

]
= −2k .

The same check as in the primitive case works for arbitrary divisibility. This
relies on the fact that the divisor equation for W is the same as applying the
differential operator

Dq = q
d

dq

to the generating series. Indeed, for the curve class β = mB + hF ,

⟨β,W ⟩ = −2m+ h+m = h−m,

which matches the exponent of qh−m in the generating series Fg,m. The divisor
equation for F acts as multiplication by m on the generating series.
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In Section 7, the refined induction reduces any generating series ultimately to
genus 0 and 1. We thus have to justify compatibility of the holomorphic anomaly
equation for generating series of the form

F1,m

(
τ0(p)τ0(γ1) . . . τ0(γn)

)
, γi ∈ H2(S) .

This compatibility however is true. By Proposition 6.2, the multiple cover formula,
which is compatible with the divisor equation, holds in genus ≤ 1. Thus, we also
find compatibility for the holomorphic anomaly equation.

Example 4.1. We consider F0,m

(
τ0(W )2

)
to illustrate the above compatibility.

To compute H0,m, we use that σ(W ⊠W ) = U⊥, where the endomorphism σ is as
defined in Section 1. Since the curve classes are contained in U , application of the
divisor equation to a basis of U⊥ implies

F0,m

(
τ0(U

⊥)
)
= 0 .

We find that

H0,m

(
τ0(W )2

)
= −4F0,m

(
τ1(1)τ0(W )

)
+

40

m
F0,m

(
τ0(F )τ0(W )

)
.

In the above notation, γn = W is the second W and k = −10 is the weight of
F0,m

(
τ0(W )

)
. We have to check that

H0,m

(
τ0(W )2

)
= DqH0,m

(
τ0(W )

)
+ 20F0,m

(
τ0(W )

)
.

By the dilaton equation, we can verify

H0,m

(
τ0(W )2

)
− DqH0,m

(
τ0(W )

)
= −2DqF0,m

(
τ1(1)

)
− 4F0,m

(
τ0(W )

)
+

20

m
F0,m

(
τ0(F )τ0(W )

)
= 4DqF0,m

(
∅
)
− 4DqF0,m

(
∅
)
+ 20F0,m

(
τ0(W )

)
= 20F0,m

(
τ0(W )

)
.

Example 4.2. The above example in genus 0 illustrates how the second last term
in the holomorphic anomaly equation (3.2) plays a role. We consider

F1,m

(
τ1(W )τ0(W )

)
to show how the last term, i.e. the term involving σ, interacts non-trivially with
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the other terms. The corresponding series H1,m are

H1,m

(
τ1(W )τ0(W )

)
= 2F0,m

(
τ1(W )τ0(W )τ0(1)τ0(F )

)
− 2
(
F1,m

(
τ2(1)τ0(W )

)
+ F1,m

(
τ1(W )τ1(1)

))
+

20

m

(
F1,m

(
τ1(F )τ0(W )

)
+ F1,m

(
τ1(W )τ0(F )

))
− 2

m
F1,m

(
ψ1; ∆U⊥

)
,

H1,m

(
τ1(W )

)
= 2F0,m

(
τ1(W )τ0(1)τ0(F )

)
− 2F1,m

(
τ2(1)

)
+

20

m
F1,m

(
τ1(F )

)
.

Let k = −8 be the weight of F1,m

(
τ1(W )

)
. Then (3.8) is equivalent to

H1,m

(
τ1(W )τ0(W )

)
= DqH1,m

(
τ1(W )

)
− 2kF1,m

(
τ1(W )

)
.

The term F1,m

(
ψ1; ∆U⊥

)
can be computed using

ψ1 = [δ1] +
1

24
[δ0] ∈ A1(M1,2) ,

where [δ0] ∈ A1(M1,2) is the class of the pushforward of the fundamental class
under the map

M0,4 →M1,2

gluing the third and fourth markings and [δ1] is the class of the boundary divisor
of curves with a rational component carrying both markings. The genus 0 contri-
bution vanishes by the divisor equation. Since the rank of U⊥ is 20, we obtain the
genus 1 contribution

F1,m

(
ψ1; ∆U⊥

)
= 20F1,m

(
τ0(p)

)
.

The divisor equation for F implies that

20

m
F1,m

(
τ1(W )τ0(F )

)
= 20F1,m

(
τ1(W )

)
+

20

m
F1,m

(
τ0(p)

)
.

We can now verify the compatibility by a direct computation using divisor and
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dilaton equation:

H1,m

(
τ1(W )τ0(W )

)
= DqH1,m

(
τ1(W )

)
− 2F1,m

(
τ1(W )

)
− 2F1,m

(
τ1(W )τ1(1)

)
+

20

m
F1,m

(
τ0(p)

)
+

20

m
F1,m

(
τ1(W )τ0(F )

)
− 2

m
F1,m

(
ψ1; ∆U⊥

)
= DqH1,m

(
τ1(W )

)
− 4F1,m

(
τ1(W )

)
+

20

m
F1,m

(
τ0(p)

)
+

20

m
F1,m

(
τ1(W )τ0(F )

)
− 40

m
F1,m

(
τ0(p)

)
= DqH1,m

(
τ1(W )

)
+ 16F1,m

(
τ1(W )

)
.

5 Relative holomorphic anomaly equation

In this section, we first state the degeneration formula for the reduced virtual
class under the degeneration to the normal cone. For primitive curve class, the
formula is proven in [29]. For sake of completeness, we summarize a proof for
arbitrary divisibility in Appendix 8. Then, we state the relative holomorphic
anomaly equation and prove the compatibility with the degeneration formula.

5.1 Degeneration formula

Let S → P1 be an elliptic K3 surface with a section. For m ≥ 1, let β =
mB + hF be a curve class. Choose a smooth fiber E of S → P1. Let ϵ : S → A1

be the total space of the degeneration to the normal cone of E in S. This space
corresponds to the degeneration

S ⇝ S ∪E P1 × E . (3.9)

Over the center ι : 0 ↪→ A1, the fiber is S ∪E P1 × E and over t ̸= 0, the fiber
is isomorphic to S. Let M g,n(ϵ, β) be the moduli space of stable maps to the
degeneration S. Over t ̸= 0, this moduli space is isomorphic to M g,n(S, β) and
over t = 0, this moduli space parametrizes stable maps to the expanded target

S̃0 = S ∪E P1 × E ∪E · · · ∪E P1 × E .

Let
ν = (g1, g2, n1, n2, h1, h2)
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be a splitting of the discrete data g, n, h and let βi = mB + hiF be the splitting
of the curve class. An ordered partition of m

µ = (µ1, . . . , µl)

specifies the contact order along the relative divisor E.
Let l = length(µ) and M g,n(S0, ν)µ be the fiber product

M g,n(S0, ν)µ =M g1,n1(S/E, β1)µ ×El M
•
g2,n2

(P1 × E/E, β2)µ (3.10)

of the boundary evaluations at relative markings13 and let

ινµ : M g,n(S0, ν)µ →M g,n(S0, β)

be the finite morphism. Let ∆El : El → El × El be the diagonal embedding.

Theorem 5.1. The reduced virtual class of maps to the degeneration (3.9) satisfies
the following properties.

(i) For ιt : {t} ↪→ A1, the Gysin pullback of reduced class is given by

ι!t[M g,n(ϵ, β)]
red = [M g,n(St, β)]red .

(ii) For the special fiber,

[M g,n(S0, β)]red =
∑
ν,µ

∏
i µi

l!
ινµ∗[M g,n(S0, ν)µ]red .

(iii) On the special fiber, we have the factorization

[M g,n(S0, ν)µ]red = ∆!
El

(
[M g1,n1(S/E, β1)µ]

red

× [M
•
g2,n2

(P1 × E/E, β2)µ]vir
)
.

Proof. Whenm ≥ 1, the reduced class of the disconnected moduli spaceM•
g,n(S/E, β)

vanishes on all components parameterizing maps with at least two connected com-
ponents. Therefore, disconnected theory can only appear on the bubble P1 × E.
The proof is given in Appendix 8.

13We put • to indicate (possibly) disconnected theory. Namely, for each connected component
C of the domain curve, intersection of C with the relative divisor E is nontrivial.
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Denote an ordered cohomology weighted partition by

µ =
(
(µ1, δ1), . . . , (µl, δl)

)
, δi ∈ H∗(E)

and let ω ∈ H2(E) be the point class. The descendent potential for the pair (S,E)
is defined analogously to the absolute case:

Frel
g,m

(
α; γ1, . . . , γn | µ

)
=
∑
h≥0

〈
α; γ1, . . . , γn | µ

〉S/E
g,mB+hF

qh−m .

The descendent potential for the pair (P1 × E,E) is defined by

Grel,•
g,m

(
α; γ1, . . . , γn | µ

)
=
∑
h≥0

〈
α; γ1, . . . , γn | µ

〉P1×E/E,•
g,mB+hF

qh .

As a corollary, we get the degeneration formula of reduced Gromov–Witten invari-
ants.

Corollary 5.2. Let γ1, . . . , γn ∈ H∗(S) and choose a lift of these cohomology
classes to the total space S. Then

Fg,m

(
τa1(γ1) . . . τan(γn)

)
=
∑
ν

∑
µ ̸=µω

∏
i µi

l!
Frel
g1,m

(
. . . | µ

)
· Grel,•

g2,m

(
. . . | µ∨) , (3.11)

where
µ∨ =

(
(µ1, δ

∨
1 ), . . . , (µl, δ

∨
l )
)

and µω =
(
(µ1, ω), . . . , (µl, ω)

)
.

Proof. By Theorem 5.1, we are left to prove that the relative profile µω on S/E
has vanishing contribution. Let x be the intersection of the section of the elliptic
fibration and the fiber E. We consider (E, x) as an abelian variety. Let K be the
kernel of the following morphism between abelian varieties

El → Pic0(E) , (xi)i 7→ OE

(∑
i

µi(xi − x)
)
.

Consider a stable map f from a curve C to an expanded degeneration of S/E.
The equality f∗[C] = β1 (after pushforward to S) in H2(S,Z) lifts to a rational
equivalence of line bundles on S because the cycle-class map

c1 : Pic(S)→ H2(S,Z) ∼= H2(S,Z)

is injective. Intersecting with the relative divisor, the two line bundles are, re-
spectively, OE(

∑
µixi) and OE(mx). Thus, we see that the evaluation map

M g1,n1(S/E, β1) → El factors through K. Since K ⊂ El has codimension 1 a
generic point on El does not lie on K and thus the contribution from the relative
profile µω vanishes.
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5.2 Relative holomorphic anomaly equations

Assuming quasimodularity, we have two ways to compute the derivative of Fg,m

with respect to C2:

(i) Apply the degeneration formula Corollary 5.2, together with the holomorphic
anomaly equations for (S,E) and (P1 × E,E).

(ii) Apply the holomorphic anomaly equation (3.3) for S, followed by the degen-
eration formula for each term.

We argue that both ways yield the same result. This compatibility is parallel
to the compatibility proved in [34, Section 4.6]. We first state the holomorphic
anomaly equations for the relevant relative geometries.

Relative (P1 × E,E)
Consider π : P1 × E → P1 as a trivial elliptic fibration over P1. For the pair

(P1×E,E) the holomorphic anomaly equation holds for cycle-valued generating se-
ries [34]. The equation for descendent potentials can thus be obtained by integrat-
ing against tautological classes α ∈ R∗(M g,n). For insertions γi ∈ H∗(P1×E,Q) we
will simply write γ. Let µ =

(
(µ1, δ1), . . . , (µl, δl)

)
and µ′ be ordered cohomology

weighted partitions. We denote by

G∼,•
g,m

(
µ | α; γ | µ′) =∑

h≥0

〈
µ | α; γ | µ′〉P1×E,∼,•

g,mP1+hE
qh

the disconnected rubber generating series for P1 × E relative to divisors at 0 and
∞. Let ∆E ⊂ E × E be the class of the diagonal. Define the generating series

Prel,•
g,m

(
α; γ | µ

)
= Grel,•

g−1,m

(
α; γ,∆P1 | µ

)
+ 2

∑
g=g1+g2

{1,...,n}=I1⊔I2
∀i∈I2:γi∈H2(E)

h≥0

∑
b;b1,...,bh
l1,...,lh

∏h
i=1 bi
h!

Grel,•
g1,m

(
αI1 ; γI1 | ((b, 1), (bi,∆E,ℓi)

h
i=1)
)

× G∼,•
g2,m

(
((b, 1), (bi,∆

∨
E,ℓi

)hi=1) | αI2 ; γI2 | µ
)

− 2
n∑

i=1

Grel,•
g,m

(
αψi; γ1, . . . , γi−1, π

∗π∗γi, γi+1, . . . , γn | µ
)

− 2
l∑

i=1

Grel,•
g,m

(
α; γ | (µ1, δ1), . . . , (µi, ψ

rel
i π

∗π∗δi), . . . , (µl, δl)
)
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where ψrel
i is the cotangent line class at the i-th relative marking and ∆E =∑

∆E,li ⊗∆∨
E,li

is the pullback of the Künneth decomposition of ∆E at the corre-
sponding relative marking. The holomorphic anomaly equation takes the form:

Proposition 5.3. ([34, Proposition 20]) Grel,•
g,m (α; γ | µ) is a quasimodular form

and
d

dC2

Grel,•
g,m (α; γ | µ) = Prel,•

g,m (α; γ | µ) .

Relative (S,E)

Since the log canonical bundle of (S,E) is nontrivial, relative moduli spaces in
fiber direction have nontrivial virtual fundamental class. Define

Fvir−rel
g,0 (α; γ | ∅) =

∑
h≥0

〈
α; γ | ∅

〉S/E,vir

g,hF
qh .

Recall that we denote the pullback of the diagonal of P1 as

∆P1 = 1⊠ F + F ⊠ 1 =
2∑

i=1

δi ⊠ δ
∨
i .
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Define a generating series

Hrel
g,m

(
α; γ | µ

)
= Frel

g−1,m

(
α; γ,∆P1 | µ

)
+ 2

∑
g=g1+g2

{1,...,n}=I1⊔I2
i∈{1,2}

Frel
g1,m

(
αI1 ; γI1 , δi | µ

)
Fvir−rel
g2,0

(
αI2 ; γI2 , δ

∨
i | ∅

)

+ 2
∑

g=g1+g2
{1,...,n}=I1⊔I2
∀i∈I2:γi∈H2(E)

h≥0

∑
b;b1,...,bh
l1,...,lh

∏h
i=1 bi
h!

Frel
g1,m

(
αI1 ; γI1 | ((b, 1), (bi,∆E,ℓi)

h
i=1)
)

× G∼,•
g2,m

(
((b, 1), (bi,∆

∨
E,ℓi

)hi=1) | αI2 ; γI2 | µ
)

− 2
n∑

i=1

Frel
g,m

(
αψi; γ1, . . . , γi−1, π

∗π∗γi, γi+1, . . . , γn | µ
)

− 2
l∑

i=1

Frel
g,m

(
α; γ | ((µ1, δ1), . . . , (µi, ψ

rel
i π

∗π∗δi), . . . , (µl, δl))
)

+
20

m

n∑
i=1

⟨γi, F ⟩Frel
g,m

(
α; γ1, . . . , γi−1, F, γi+1, . . . , γn | µ

)
− 2

m

∑
i<j

Frel
g,m

(
α; γ1, . . . , σ1(γi, γj)︸ ︷︷ ︸

ith

, . . . , σ2(γi, γj)︸ ︷︷ ︸
jth

, . . . , γn | µ
)
.

The conjectural holomorphic anomaly equation for (S,E) has the following form:

Frel
g,m(α; γ | µ) ∈

1

∆(q)m
QMod(m)

and
d

dC2

Frel
g,m(α; γ | µ) = Hrel

g,m(α; γ | µ) . (3.12)

Proposition 5.4. Let m ≥ 1. Assuming quasimodularity for Fg,m and Frel
g,m, the

holomorphic anomaly equations are compatible with the degeneration formula in
the above sense.

Proof. The proof given in [34, Proposition 21] treats virtual fundamental classes,
not reduced classes. The splitting behavior of the reduced class with respect to
restriction to boundary divisors [29, Section 7.3] calls for a slight adaptation of
the proof. For this, we introduce a formal variable ε with ε2 = 0. We can then
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interpret reduced Gromov–Witten invariants of the K3 surface as integrals against
the class14

[M g,n(S, β)]
vir + ε [M g,n(S, β)]

red

followed by taking the [ε]-coefficient. We consider a similar class for S/E. This
class has the advantage of satisfying the usual splitting behavior of virtual funda-
mental classes. Thus, for this class one can follow the proof of compatibility given
in [34, Proposition 21]. All the terms appearing in the computation (ii) also ap-
pear in computation (i). We are left with proving the cancellation of the remaining
terms in (i). This follows from comparing ψrel

i -class and the ψ-class pulled-back
from the stack of target degeneration [34, Lemma 22]. In particular, we match
the following terms: the third term of Hrel times Grel,• with the fourth term of Frel

times Prel,•; and analogously for the fifth term of Hrel times Grel,• with the second
term of Frel times Prel,•.

The main advantage of the holomorphic anomaly equation is that it is compat-
ible with the degeneration formula. Thus, the genus reduction from the degenera-
tion formula connects the low genus results with arbitrary genus predictions. On
the other hand, it is not even clear to say what should be the compatibility of the
multiple cover formula and the degeneration formula.

6 Tautological relations and initial condition

This section contains a proof of the multiple cover formula in genus 0 and
genus 1 for any divisibility m. It is a direct consequence of the KKV formula.
However, as initial condition for our induction we also require a special case in
genus 2, which cannot be easily deduced from the KKV formula. We treat this
descendent potential separately, using double ramification relations [3] for K3 sur-
faces. This approach is likely to give relations in any genus and will be pursued
in the future.

6.1 Double ramification relations

In this section we recall double ramification relations with target variety devel-
oped in [2, 3].

Let Picg,n be the Picard stack for the universal curve over the stack of prestable
curves Mg,n of genus g with n markings. Let

π : C→ Picg,n, si : Picg,n → C, L→ C, ωπ → C (3.13)

14We thank G. Oberdieck for pointing this out.
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be the universal curve, the i-th section, the universal line bundle and the relative
dualizing sheaf of π. The following operational Chow classes on Picg,n are obtained
from the universal structure (3.13):

• ψi = c1(s
∗
iωπ) ∈ A1

op(Picg,n) ,

• ξi = c1(s
∗
iL) ∈ A1

op(Picg,n) ,

• η = π∗ (c1(L)
2) ∈ A1

op(Picg,n) .

Let A = (a1, . . . , an) ∈ Zn be a vector of integers satisfying∑
i

ai = d , (3.14)

where d is the degree of the line bundle. We denote by P c,r
g,A,d the codimension c

component of the class

∑
Γ∈Gg,n,d

w∈WΓ,r

r−h1(Γδ)

|Aut(Γδ)|
jΓ∗

[
n∏

i=1

exp

(
1

2
a2iψi + aiξi

) ∏
v∈V (Γδ)

exp

(
−1

2
η(v)

)

∏
e=(h,h′)∈E(Γ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)
ψh + ψh′

]
.

We refer to [3] for details about the notations. This expression is polynomial in r
when r is sufficiently large. Let P c

g,A,d be the constant part of P c,r
g,A,d.

Theorem 6.1. ([3, Theorem 8]) P c
g,A,d = 0 for all c > g in Ac

op(Picg,n).

After restricting P c
g,A,d to (3.14), this expression is a polynomial in a1, . . . , an−1.

The polynomiality will be used to get refined relations.
Let L be a line bundle on S with degree∫

β

c1(L) = d .

The choice of a line bundle L induces a morphism

φL : M g,n(S, β)→ Picg,n, [f : C → S] 7→ (C, f ∗L) .

Then Theorem 6.1 gives relations

P c
g,A,d(L) = φ∗

LP
c
g,A,d ∩ [M g,n(S, β)]

red = 0 for all c > g (3.15)

in Ag+n−c

(
M g,n(S, β)

)
.
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6.2 Compatibility II

The relations among descendent potentials coming from tautological relations
on M g,n(S, β) are compatible with the multiple cover formula. This follows from
two observations. Firstly, the splitting behavior of the reduced class, discussed in
Section 3.2, is crucial. It is already crucial to justify compatibility with respect
to boundary restriction for tautological classes pulled back from M g,n. For tauto-
logical relations on M g,n(S, β), a second fact, which we want to explain below, is
essential for the compatibility.

For c > g > 0, A ∈ Zn and b ∈ Z, consider the series of relations

P c
g,bA,db(L

⊗b) = 0

obtained by tensoring the line bundle L by b times. For each coefficient of a
monomial in ai-variables, this expression is polynomial in b and hence each of b-
variable is a relation. As a consequence, each term of a relation P c

g,A,m(F ) gives
the same value of

mdeg−deg ,

where deg(ξ) = 1 and deg(ξ) = 0, as in Definition 1.1. The same holds true with
the roles of F and W interchanged. Thus, the relations are compatible with the
operator

mdeg−degTm,2g−2+deg ,

which gives the multiple cover formula in Conjecture 3.1.

6.3 Initial condition

The Katz–Klemm–Vafa (KKV) formula implies that the generating series of
λg-integrals

Fg,m

(
λg; ∅

)
satisfy the multiple cover formula [36]. Here, λg = cg(Eg) is the top Chern class of
the rank g Hodge bundle Eg on M g(S, β). The KKV formula will be the starting
point of our genus induction.

The class λg is a tautological class by the Grothendieck–Riemann–Roch compu-
tation ([15]) but the formula is rather complicated. Instead we use an alternative
expression of λg in terms of double ramification cycle, proven in [17]. We recall
that the class (−1)gλg is equal to the double ramification cycle DRg(∅) with the
empty condition. By [17, Theorem 1] the class DRg(∅) can be written as a graph
sum of tautological classes without κ-classes.

Proposition 6.2. The multiple cover formula holds in genus 0 and genus 1 for all
m ≥ 1.
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Proof. When g = 0, 1, the tautological ring R∗(M g,n) is additively generated by
boundary strata ([19, 37]). Thus, one can replace descendents α ∈ R∗(M g,n) by
classes in H∗(S). By the divisor equation and the dimension constraint, we can
reduce to the case F0,m

(
∅
)

and F1,m(τ0(p)). The genus 0 case is covered by the
full Yau–Zaslow formula [21, 36]. The genus 1 case follows from the genus 2 KKV
formula. Using the boundary expression of λ2 on M2, we have

F2,m

(
λ2; ∅

)
=

1

240
F1,m

(
ψ1; ∆S

)
+

1

1152
F0,m

(
; ∆S,∆S

)
=

1

10
F1,m

(
τ0(p)

)
+

1

60
D2

qF0,m

(
∅
)
,

where ∆S ⊂ S × S is the diagonal class. Therefore, F1,m

(
τ0(p)

)
satisfies Conjec-

ture 3.1.

In the argument below, we will use tautological relations on M g,n which are
recently obtained by r-spin relations. For convenience, we summarize the result.

Proposition 6.3. ([23]) Let g ≥ 2 and n ≥ 1. Consider tautological classes on
M g,n.

(i) (Topological Recursion Relations) Any monomial of ψ-classes of degree at
least g can be represented by a tautological class supported on boundary
strata without κ-classes.

(ii) Any tautological class of degree g − 1 can represented by a sum of a linear
combination of ψg−1

1 , . . . , ψg−1
n and a tautological class supported on bound-

ary strata.

Proof. The proof of (i) follows from the proof of [23, Lemma 5.2] (see also [12,
page 3]). By [23, Proposition 3.1] (or [10, Theorem 1.1]) the degree g − 1 part
Rg−1(Mg,n) is spanned by ψg−1

1 , . . . , ψg−1
n . Since relations used in the proof are all

tautological, the boundary expression is tautological and thus we obtain (ii).

Together with the boundary expression for λg+1 we obtain the following more
general consequence of the KKV formula:

Proposition 6.4. Let m ≥ 1 and g ≥ 1. Assume the multiple cover formula
Conjecture 3.1 holds for m and all descendents of genus < g. Then Conjecture 3.1
holds for

Fg,m

(
τg−1(p)

)
.

Proof. Let δ ∈ R1(M g) be the boundary divisor corresponding to a curve with
nonseparating node. Denote two half edges as h and h′. Recall that (−1)gλg is
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equal to the double ramification cycle DRg(∅) with the empty condition. We use
this formula for genus g + 1. By [17, Theorem 1],

(−1)g+1λg+1 = DRg+1(∅)

=
1

2

[
− 1

(g + 1)!

r−1∑
w=0

(w2

2
(ψh + ψh′)

)g]
r1
δ + lower genus ,

where [· · · ]r1 is the coefficient of the linear part of a polynomial in r. The leading
term is nonzero by Faulhaber’s formula.

By Proposition 6.3 (i) any ψ-monomial in R≥g(M g,n) can be represented by a
sum of tautological classes supported on boundary strata without κ classes. There
is only one graph with a genus g vertex (with a rational component carrying both
markings). The graph is decorated with a polynomial of degree g − 1 in ψ- and
κ-classes. By Proposition 6.3 (ii) this tautological class can be represented by a
sum of a multiple of ψg−1 and tautological classes supported on boundary strata.
We find that 15

(ψ1 + ψ2)
g = c

g 0

1

2

ψg−1

+ lower genus

in Rg(M g,2) for some c ∈ Q. Therefore, it suffices to prove that c is nonzero.
Recall that λgλg−1 vanishes on M g,n \M rt

g,n, so∫
Mg,2

(ψ1 + ψ2)
gλgλg−1 = c

∫
Mg,1

ψg−1
1 λgλg−1 .

The left hand side of the equation is nonzero by [17, Lemma 8], which concludes
the proof.

We now consider the case of genus two. By the Getzler–Ionel vanishing on
M2,n, the dimension constraint, and the divisor equation any descendent insertion
reduces to the following three cases:

F2,m

(
τ1(p)

)
, F2,m

(
τ0(p)

2
)
, F2,m

(
τ1(γ)τ0(p)

)
with γ ∈ H2(S) .

The first case is treated in Proposition 6.4 and follows from the KKV formula in
genus three and lower genus. The second case for m = 2 is treated as part of the
proof of Theorem 1.1 in Section 7. We use the double ramification relation (3.15)
to prove the multiple cover formula for the third case. The point class p will be
obtained as the product of F and W .

15The number under each vertex is the genus and legs correspond to markings.
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Proposition 6.5. For γ ∈ H2(S), the generating series F2,m(τ1(γ)τ0(p)) satisfies
Conjecture 3.1.

Proof. We will use relations in A2+n−3

(
M2,n(S, β)

)
:

P 3
2,A,m(F ) = 0

associated to the line bundle OS(F ) on S. More precisely, we will distinguish two
cases γ ∈ U and γ ∈ U⊥ and set respectively

A = (a1 ,m− a1) , A = (a1 , a2 ,m− a1 − a2) .

Refined relations are then obtained by considering particular monomials in the
ai, as outlined in the previous section. The η-class vanishes in this case because
⟨F, F ⟩ = 0 and, for the same reason, ξ2i vanishes. Define

X = F2,m

(
τ1(γ)τ0(p)

)
.

The case γ = F is treated first. As explained in Section 6.1, the tautological
relations are polynomial in ai and we may obtain a refined relation by considering
the [a41]-coefficient of

P 3
2,A,m(F )|a2=m−a1 .

We will only need to consider boundary strata which both:

• contribute to X and

• contribute to the [a41]-coefficient.

These two properties simplify the calculation significantly. By the splitting
property of the reduced class, a relevant boundary stratum is a tree with one
genus 2 vertex and contracted genus 0 components. The integrals are given by
the intersection product of the corresponding insertions. In the case with only two
markings, the only relevant stratum is16

h h′
1

2

.

The weight factor for this stratum is

w(h)w(h′)

2
= −m

2

2
.

16The genus 2 vertex is represented by a filled node and other nodes represent genus 0 vertices.
Labeled half-edges correspond to markings.
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This stratum, therefore, cannot contribute to the [a41]-coefficient, since ψ-classes
on the genus 0 component vanish. It remains to determine the contributions from
the trivial graph

1 2

We will order the terms by the total degree deg(ψ) in the ψ-classes.

() deg(ψ) = 0. The relation we consider is of codimension three. This case is
therefore impossible by virtue of ξ2i = 0.

(i) deg(ψ) = 1. This case results in non-trivial terms, discussed below.

(ii) deg(ψ) ≥ 2. We may apply Proposition 6.3 (i) to reduce to the descendent
F2,m

(
τ1(p)

)
. This descendent is covered by Proposition 6.4.

Therefore, up to lower genus data, the [a41]-coefficient is

−1

2
ψ1ξ1ξ2 −

1

2
ψ2ξ1ξ2 .

Integrating
ev∗2(W )P 3

2,A,m(F )|a2=m−a1

against the reduced class, we find (up to lower genus data)

−1

2
X − m

2
F2,m

(
τ1(p)

)
,

where the second term is obtained by application of the divisor equation. We
thus find that X is a linear combination of terms which satisfy Conjecture 3.1.
Switching the role of F and W , we obtain the same result for γ = W .

Next, we consider γ ∈ U⊥. The following vanishing of intersection products
will be used frequently:

⟨γ, F ⟩ = 0 , ⟨γ,W ⟩ = 0 , ⟨γ, β⟩ = 0 .

We use a similar argument as above, this time, however, we use three markings
and consider the [a31a2]-coefficient of17

ev∗1(γ) ev
∗
2(W )P 3

2,A,m(F )|a3=m−a1−a2 . (3.16)

17We are grateful to the referee for pointing out a mistake in an earlier version of the text. It
has become clear that the choice of monomial, leading to non-trivial relations, is a very subtle
one. Symmetry in the ai and the insertions causes cancellation in many cases. We plan to come
back to this in future work.
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By the above vanishing of intersection products, the only possible trees with non-
trivial contribution are

2

3

1
h h′ ,

1

3

2
h h′ .

The weight factor for the right stratum is

w(h)w(h′)

2
= −(m− a2)2

2
.

Since ψ-classes on the genus 0 component vanish, the power of a1 in any monomial
obtained from this stratum is bounded by two. The contribution to the [a31a2]-
coefficient is, therefore, zero.

Next, we explain the contributions from the left stratum. Note that the left
vertex is of genus 2 with two markings and we may apply the same reasoning as
in the discussion for γ = F above. Here, the deg(ψ) = 0 term ξ1ξ2 has trivial
contribution due to ⟨γ, F ⟩ = 0. The deg(ψ) = 1 terms ψhξ2, ψhξ3 have vanishing
contribution by application of the divisor equation for γ. Non-trivial contributions
are obtained only from

ψ1ξ2 , ψ1ξ3 .

These two terms have contributions

−(m− a1)2

4
a21a2X , −(m− a1)2

4
a21a3X .

The [a31a2]-coefficients, however, cancel due to a3 = m − a1 − a2. It remains to
determine the contributions from the trivial graph:

1 2 3

As above, we order the terms by the total degree deg(ψ) in the ψ-classes.

() deg(ψ) = 0. The relation we consider is of codimension three. Since ξ2i = 0,
the class ξ1 must appear. This term, however, vanishes due to ⟨γ, F ⟩ = 0.

(i) deg(ψ) = 1. This case results in non-trivial terms corresponding to ψ1 or ψ3,
discussed below. The choice of the monomial [a31a2] excludes the appearance
of ψ2.

(ii) deg(ψ) = 2. This case results in non-trivial terms corresponding to ψ1ψ3

or ψ2
3, discussed below. The choice of the monomial [a31a2] excludes the

appearance of ψ2
1.
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(iii) deg(ψ) = 3. As above, this case reduces to the descendent F2,m

(
τ1(p)

)
which

is covered already.

The contributions from deg(ψ) ∈ {1, 2} are:

ψ1ξ2ξ3 → 1

2
a21a2a3F2,m

(
τ1(γ)τ0(p)τ0(F )

)
=

1

2
a21a2(m− a1 − a2)mX ,

ψ3ξ2ξ3 → 1

2
a23a2a3F2,m

(
τ0(γ)τ0(p)τ1(F )

)
=0 ,

ψ1ψ3ξ2 → 1

2
a21

1

2
a23a2F2,m

(
τ1(γ)τ0(p)τ1(1)

)
= a21a2(m− a1 − a2)2X ,

ψ1ψ3ξ3 → 1

2
a21

1

2
a33F2,m

(
τ1(γ)τ0(W )τ1(F )

)
=

1

4
a21(m− a1 − a2)3X + (lower genus) ,

ψ2
3ξ2 → 1

8
a43a2F2,m

(
τ0(γ)τ0(p)τ2(1)

)
=

1

8
a2(m− a1 − a2)4X ,

ψ2
3ξ3 → 1

8
a43a3F2,m

(
τ0(γ)τ0(W )τ2(F )

)
=0 .

The third calculation uses the dilaton equation. All of the other calculations are
obtained by application of the divisor equation. Additionally, the fourth calcula-
tion involves Proposition 6.3. The only stratum with a genus 2 vertex (i.e. with
both markings on a contracted genus 0 component) has vanishing contribution due
to ⟨γ, F ⟩ = 0 and, therefore, the relation reduces to lower genus descendents. The
total contribution to [a31a2] is

−1

2
mX − 2mX +

3

2
mX − 1

2
mX = −3

2
mX .

We find that X is a linear combination of terms which satisfy Conjecture 3.1.

Remark 6.6. In fact, for γ ∈ U⊥ the above generating series vanishes (and thus
trivially satisfies the multiple cover formula). A proof in the primitive case is given
in [9, Lemma 4].
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7 Proof of Theorem 1.1 and 1.3

7.1 Proof of Theorem 1.1

The proof proceeds via induction on the pair (g, n) ordered by the lexicographic
order: (g′, n′) < (g, n) if

• g′ < g or

• g′ = g and n′ < n .

Recall the dimension constraint of insertions:

g + n = deg(α) +
∑
i

deg(γi) .

We separate the proof into several steps.
Case 0. The genus 0 case is covered by Proposition 6.2. This serves as the start
for our induction.
Case 1. If all cohomology classes γi satisfy deg(γi) ≤ 1, then deg(α) ≥ g and by
the strong form of Getzler–Ionel vanishing [15, Proposition 2] we have α = ι∗α

′

with α′ ∈ R∗(∂M g,n) and ι : ∂M g,n →M g,n. We are thus reduced to lower (g, n).
Case 2. Assume deg(α) ≤ g−2 or equivalently, there exist at least two descendents
of the point class. We use the degeneration to the normal cone of a smooth elliptic
fiber:

S ⇝ S ∪E (P1 × E) .

We specialize the point class to the bubble P1 × E. Let C = C ′ ∪ C ′′ be the
splitting of a domain curve appearing in the degeneration formula in Theorem 5.1.
Namely, C ′ is the component on S and C ′′ is the component on P1×E. We argue
that this splitting has non-trivial contribution only for g(C ′) < g. If g(C ′) = g,
this forces C ′′ to be a disconnected union of two rational curves. Since the degree
of the curve class along the divisor is ⟨2B + hF, F ⟩ = 2, the two descendents
of the point class then force the cohomology weighted partition to be (1, 1)2 on
the bubble or, equivalently, (1, ω)2 for (S,E). This contribution vanishes because
there are no curves which can satisfy this condition (if (1, ω)2 is represented by a
generic point in E2, see Corollary 5.2).

Case 3. Assume deg(α) = g−1 or equivalently, there exists only one desecendent
of the point class. We may thus assume γ1 = p. If n = 1, g ≥ 2, we can move
τg−1(p) to the bubble and the genus on S drops.

When n ≥ 2, moving the point class to the bubble as in Case 2 may not reduce
the genus. In particular, moving τ0(p) to the bubble has non-trivial contribution
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from rational curves on the bubble. On the other hand, if a ≥ 1, moving τa(p) to
the bubble reduces the genus on S because of the dimension constraint.

We use Buryak, Shadrin and Zvonkine’s description of the top tautological
group Rg−1(Mg,n) [10]. For any α ∈ Rg−1(M g,n) the restriction of α to Mg,n is a
linear combination of

Rg−1(Mg,n) = Q
〈
ψg−1
1 , ψg−1

2 , . . . , ψg−1
n

〉
(3.17)

and the boundary term is also tautological class in Rg−1(∂M g,n). By the divisor
equation and subsequent use of (3.17), we can reduce to cases for ≤ (g, 2). When
g ≥ 3, (3.17) has a different basis

Rg−1(Mg,2) = Q
〈
ψg−1
1 , ψ1ψ

g−2
2

〉
which is an easy consequence of the generalized top intersection formula. There-
fore, we may assume the descendent of the point class is of the form τa(p) with
a ≥ 1. Now, specializing this insertion to the bubble P1 × E reduces the genus
and hence the same argument as in Case 2 applies. The genus 2 case is covered
by Proposition 6.5.

Relative vs. absolute. We reduced to invariants for (S,E) with genus g′ < g. As
explained in the proof of [29, Lemma 31] (see also [28]), the degeneration formula
provides an upper triangular relation between absolute and relative invariants for
all pairs ≤ (g′, n′). Thus, our induction applies.

7.2 Proof of Theorem 1.3

We argue by showing that each induction step in the proof of Theorem 1.1 is
compatible with the holomorphic anomaly equation. Nontrivial step appears when
the degeneration formula is used. From the compatibility result Proposition 5.4,
we are reduced to proving the relative holomorphic anomaly equation for lower
genus relative generating series Frel

g′,2 for (S,E) and relative generating series for
(P1 × E,E). The holomorphic anomaly equation for (P1 × E,E) is established
in [33]. Because of the relative vs. absolute correspondence [28], we are reduced to
proving the holomorphic anomaly equation for Fg′,2 in genus 0, 1 and some genus
2 descendents. We proved the multiple cover formula for these cases in Section 6,
which implies the holomorphic anomaly equation by Proposition 1.5.

Remark 7.1. Parallel argument shows that we can always reduce the proof for
arbitrary descendent insertions to the case when the number of point insertions is
less than or equal to m− 1.
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8 Examples

Example 8.1. We compute F1,2

(
τ1(F )

)
via topological recursion in genus one

and illustrate Conjecture 3.1. Let [δ0] ∈ A1(M1,1) be the pushforward of the
fundamental class under the gluing map

M0,3 →M1,1 .

Since
ψ1 =

1

24
[δ0] ∈ A1(M1,1) ,

we obtain

F1,1

(
τ1(F )

)
=

1

24
F0,1

(
τ0(F )τ0(∆S)

)
=

1

12
F0,1

(
τ0(F )τ0(F ×W )

)
=

1

12
DqF0,1 ,

where ∆S ⊂ S × S is the diagonal class. Analogously,

F1,2

(
τ1(F )

)
=

1

24
F0,2

(
τ0(F )τ0(∆S)

)
=

1

3
DqF0,2 .

Using the multiple cover formula in genus zero

F0,2 = T2F0,1 +
1023

8192
F0,1(q

2) ,

we obtain

F1,2

(
τ1(F )

)
=

1

3
DqF0,2 = 2T2

1

12
DqF0,1 +

1023

1024
B2

1

12
DqF0,1

= 2T2F1,1

(
τ1(F )

)
+ (20 − 2−10)B2F1,1

(
τ1(F )

)
,

in perfect agreement with Conjecture 3.1 using the formula for T2,0 from Lemma 2.7.

Example 8.2. We compute F2,2(τ0(p)
2) via degeneration formula and verify the

multiple cover formula. The first two terms are computed by the classical geometry
of K3 surface in [32]. For simplicity we write F1,2 = F1,2(τ0(p)). The relative
invariants for (S,E) can be written in terms of absolute invariants:

Lemma 8.3. (i) Frel
0,2

(
∅ | (1, 1)2

)
= 2F0,2,

(ii) Frel
1,2

(
∅ | (1, 1), (1, ω)

)
= F1,2 − 2F0,2DqC2,
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(iii) Frel
1,2

(
∅ | (2, 1)

)
= 1

3
DqF0,2 − 4C2F0,2.

Proof. It is a standard computation of the relative vs. absolute correspondence [28].

The relative invariants for (P1×E,E) can be computed by the Gromov–Witten
invariants of E.

Lemma 8.4. (i) Grel
0,1

(
τ0(p) | (1, 1)

)
= 1, Grel

0,1

(
∅ | (1, ω)

)
= 1,

(ii) Grel
1,1

(
τ0(p) | (1, ω)

)
= DqC2, Grel

1,1

(
τ0(p)

2 | (1, 1)
)
= 2DqC2,

(iii) Grel
2,1

(
τ0(p)

2 | (1, ω)
)
= (DqC2)

2,

(iv) Grel
1,2

(
τ0(p)

2 | (2, ω)
)
= D2

qC2, Grel
1,2

(
τ0(p)

2 | (1, ω)2
)
= D3

qC2.

Consider the degeneration where two point insertions move to the bubble P1×
E. By Theorem 5.1,

F2,2

(
τ0(p)2

)
=
(
F1,2 − 2F0,2DqC2

)
4DqC2 +

(1
3
DqF0,2 − 4C2F0,2

)
2D2

qC2

+ (2F0,2)
1

2

(
D3

qC2 + 4(DqC2)
2
)

= 36q + 8760q2 + 754992q3 + 36694512q4 + · · · .

On the other hand, the primitive generating series

F2,1

(
τ0(p)

2
)
=

(
DqC2

)2
∆(q)

is computed in [7] and one can apply the multiple cover formula to obtain a can-
didate for F2,2

(
τ0(p)2

)
. The first few terms of the two generating series match.

It is enough to conclude that the two generating series are indeed equal because
the space of quasimodular forms with given weight is finite dimensional. However,
it seems non-trivial to match the above formula from the degeneration with the
formula provided by Conjecture 3.1.

A proof of degeneration formula

For a self-contained exposition, we present a proof of the degeneration formula
which is parallel to the proof in [29, 30]. When m = 1, 2, a proof using symplectic
geometry was presented in [24].
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Perfect obstruction theory

For simplicity assume n = 0. General cases easily follow from this case. Let
ϵ : S → A1 be the total family of the degeneration and

M g(ϵ, β)→ A1

be the moduli space of stable maps to the expanded target S̃. For the relative
profile µ, the embedding

ιµ : M g(S0, µ) ↪→M g(ϵ, β)

can be realized as a Cartier pseudo-divisor (Lµ, sµ).
Let Eϵ → LMg(ϵ,β)

be the perfect obstruction theory constructed in [27]. Then
the perfect obstruction theories E0 and Eµ of M g(S0, β) and M g(S0, µ) sit in exact
triangles

L∨
0 → ι∗0Eϵ → E0

[1]−→

L∨
µ → ι∗µEϵ → Eµ

[1]−→ .

On M g(S0, µ), the perfect obstruction theory splits as follows. Let E1 and E2

be the perfect obstruction theory of relative stable map spaces M g(S/E, β1)µ and
M g(P1 × E/E, β2)µ respectively. There exists an exact triangle

l(µ)⊕
i=1

(N∨
∆E/E×E)i → E1 ⊞ E2 → Eµ

[1]−→ (3.18)

where (N∨
∆E/E×E)i is the pullback of the conormal bundle of the diagonal ∆E ⊂

E × E along the i-th relative marking.

Reduced class

Let ρ : S̃ → S × A1 → S be the projection. By pulling back the holomorphic
symplectic form on S via ρ, one can define a cosection of the obstruction sheaf of
Eϵ

ObMg(ϵ,β)
→ O ,

see [20, Section 5]. Dualizing the cosection gives a morphism

γ : O[1]→ Eϵ .

Let Ered
ϵ be the cone of γ which gives the reduced class on M g(ϵ, β). Similarly we

can construct
γrel : O[1]→ E1

for the moduli space of relative stable maps M g(S/E, β).
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Degeneration formula for reduced class

Restricting γ to M g(S0, β) and M g(S0, µ), we get

γ0 : O[1]→ ι∗0Eϵ → E0

γµ : O[1]→ ι∗µEϵ → Eµ

where the compositions induce reduced classes. The exact triangles

L∨
0 → ι∗0E

red
ϵ → Ered

0

[1]−→ ,

L∨
µ → ιµE

red
ϵ → Ered

µ

[1]−→ ,

still hold.

Lemma 8.5. We have an exact triangle

N∨
∆

El/El×El → Ered
1 ⊞ E2 → Ered

µ

[1]−→

on M g(S0, µ) compatible with the structure maps to the cotangent complex.

Proof. Consider the diagram of complexes

O[1]⊞ 0 O[1]

⊕l(µ)
i=1(N

∨
∆E/E×E)i E1 ⊞ E2 Eµ

⊕l(µ)
i=1(N

∨
∆E/E×E)i Ered

1 ⊞ E2 Ered
µ

γrel⊞0 γµ

where the middle horizontal morphisms are the exact triangle from (3.18). The
square on the top commutes because the cosections for S̃ and (S,E) are both
coming from the holomorphic symplectic form on S. The vertical morphisms are
exact triangles and hence induces a map between cones.

Now Theorem 5.1 is a direct consequence of Lemma 8.5.
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