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Abstract. For any smooth projective moduli spaceM of Gieseker stable sheaves on a complex
projective K3 surface (or an abelian surface) S, we prove that the Chow motive hpMq becomes
a direct summand of a motive

À

hpSkiqpniq with ki ď dimpMq. The result implies that finite
dimensionality of hpMq follows from finite dimensionality of hpSq. The technique also applies to
moduli spaces of twisted sheaves and to moduli spaces of stable objects in Db

pS, αq for a Brauer
class α P BrpSq. In a similar vein, we investigate the relation between the Chow motives of a K3
surface S and a cubic fourfold X when there exists an isometry rHpS, α,Zq » rHpAX ,Zq. In this
case, we prove that there is an isomorphism of transcendental Chow motives tpSqp1q » tpXq.

Introduction

Given a moduli space M of stable sheaves on a K3 surface S, one expects that certain
invariants of M are determined by the geometry of S. We will study the relation between the
Chow groups and motives of M and S. The analogous question for moduli spaces of stable
vector bundles on a curve has been settled by del Baño [15]. He showed that the Chow motive
of the moduli space is contained in the full pseudo-abelian tensor subcategory generated by the
motive of the curve and the Lefschetz motive.

For surfaces, a natural notion of stability for sheaves is provided by Gieseker stability. More
generally, we will consider stability for α-twisted sheaves with α P BrpSq a Brauer class. The
case of a moduli space of Gieseker stable sheaves corresponds to the trivial Brauer class α “ 1.
The first main result of this paper is the following:

Theorem 0.1. Let S be a complex projective K3 surface or an abelian surface and α P BrpSq.
Assume that M is one of the following:

‚ a smooth projective moduli space of Gieseker stable α-twisted sheaves or
‚ a smooth projective moduli space of stable objects in DbpS, αq.

Then the Chow motive hpMq of M is a direct summand of a motive
À

hpSkiqpniq for some
1 ď ki ď dimM , ni P Z.
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The theorem extends a result of Arapura [5, Thm. 7.8] to the level of Chow groups and,
therefore, allows an application to Chow motives. In fact, our result holds true for any surface
with effective anti-canonical bundle, see Remark 2.2 for details. The argument also applies to
curves and gives a significantly easier proof of del Baño’s result.

As a direct consequence, finite dimensionality of the motive of S implies the same for M :

Corollary 0.2. Let S and M be as above. If hpSq is finite dimensional, then hpMq is finite
dimensional as well. 2

The motive of any abelian variety is known to be finite dimensional [26, Ex. 9.1] and
consequently we obtain the following unconditional result:

Corollary 0.3. Let S be an abelian surface and M a smooth projective moduli space of stable
sheaves on S. Then the Chow motive hpMq is finite dimensional. 2

Although finite dimensionality is expected for all motives of smooth projective varieties, only
a few families of K3 surfaces with finite dimensional motives are known. Even fewer examples
are known in higher dimension; one example is provided by the Hilbert scheme Srns of a K3
surface S with finite dimensional motive, see [14, Thn. 6.2.1].

The second half of this paper has a similar flavour; we investigate the relation between K3
surfaces and cubic fourfolds on the level of algebraic cycles. Recall that cubic fourfolds admitting
a labelling of discriminant d form a divisor Cd Ď C inside the moduli space of smooth complex
cubic fourfolds (see Section 3.1 for a brief review of the relevant notions). For a cubic fourfold
X, we denote by AX Ď DbpXq the Kuznetsov component of the derived category [28]. We prove
the following result:

Theorem 0.4. Let X P Cd be a special cubic fourfold. Assume that there exist a K3 surface S,
a Brauer class α P BrpSq and a Hodge isometry rHpS, α,Zq » rHpAX ,Zq. Then there is a
cycle Z P CH3pS ˆ Xq inducing an isomorphism of Chow groups CH0pSqhom

„ //CH1pXqhom

and transcendental motives tpSqp1q » tpXq. Furthermore, hpXq » 1‘ hpSqp1q ‘ L2 ‘ L4 and,
therefore, hpSq is finite dimensional if and only if hpXq is finite dimensional.

A (twisted) K3 surface and a Hodge isometry rHpS, α,Zq » rHpAX ,Zq as above exist if and
only if d satisfies a certain numerical condition (˚˚1), see for example 3.1.

The two results fit into the following picture. For a variety X we denote by MotpXq the full
pseudo-abelian tensor subcategory of motives generated by hpXq and the Lefschetz motive L.
Let now X be a cubic fourfold and F its Fano variety of lines, which is a hyperkähler variety of
dimension four. It is known that the motive of F is contained in MotpXq (we say that hpF q is
motivated by hpXq following Arapura [5]). Indeed, Laterveer [31, Thm. 5] proved a formula for
Chow motives, which is similar to the result obtained by Galkin–Shinder [19, Thm. 5.1] in the
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Grothendieck ring of varieties:

hpF qp2q ‘
4
à

i“0

hpXqpiq » hpXr2sq.

Since the Hilbert scheme Xr2s can be described as a blow-up of the symmetric product Xp2q

along the diagonal, its motive is motivated by hpXq. In Section 2.2 we will argue that hpXq is
also motivated by hpF q, see also [11, Thm. 4.5]:

Corollary 0.5. Let X be a cubic fourfold and F its Fano variety of lines. The full pseudo-abelian
tensor categories of motives generated by the Lefschetz motive and hpXq and hpF q resp., agree:

MotpXq “ MotpF q.

In particular, hpXq is finite dimensional if and only if hpF q is finite dimensional.

To compare this result with Theorem 0.1, assume that X is a special cubic fourfold satisfying
condition (˚˚1), which is equivalent to the Fano variety F being birational to a moduli space M
of stable twisted sheaves on a K3 surface S, cf. [23, Prop. 4.1]. In this case, all of the following
categories of motives agree:

MotpSq “ MotpMq “ MotpF q “ MotpXq.

Indeed, we know that birational hyperkähler varieties have isomorphic Chow motives, see
Proposition 1.4. This induces the middle equality. It follows from Theorem 0.4 that MotpSq

and MotpXq coincide. For an arbitrary complex projective K3 surface and a moduli space M
as in Theorem 0.1 we have at least an inclusion MotpMq Ď MotpSq which we expect to be an
equality as well, see Remark 2.3 for some comments.

Acknowledgements. I am grateful to Daniel Huybrechts for invaluable suggestions and ex-
planations. This work has benefited from many discussions with Thorsten Beckmann, whom I
wish to thank. Finally, many thanks to Axel Kölschbach and Andrey Soldatenkov for helping to
improve the exposition and to the referee for a very careful reading and several useful suggestions.
This work is part of the author’s Master’s thesis.

Notations and Conventions. We will work over the complex numbers unless otherwise stated.
The bounded derived category of coherent sheaves on a smooth projective variety X is denoted
by DbpXq. Throughout, all motives are meant to be Chow motives with rational coefficients,
see Section 1.

1. Preliminaries

We briefly review the main facts about Chow motives of K3 surfaces and cubic fourfolds. The
objects of the category MotC of Chow motives are triples pX, p,mq, with X a smooth projective
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variety over C, p P CHdimpXqpX ˆ XqQ a projector (with respect to convolution) and m an
integer. Morphisms are defined by

HomppX, p,mq, pY, q, nqq “ q ˝ CHdimpXq`n´mpX ˆ Y qQ ˝ p.

The motive of a smooth projective variety X is defined as hpXq “ pX, r∆Xs, 0q. We denote the
motive of a point by 1 and the Lefschetz motive by L. Let S be a projective K3 surface and
ρpSq the Picard number of S. Recall that there is a decomposition (see e.g. [36, Ch. 6.3]):

hpSq » 1‘ L‘ρpSq ‘ tpSq ‘ L2.

The only mysterious part is the transcendental motive tpSq “ pS, π2,tr
S , 0q. The motive of a cubic

fourfold X splits similarly (cf. [11, Sec. 4]):

hpXq » 1‘ L‘ pL2q‘ρ2 ‘ tpXq ‘ L3 ‘ L4,

where ρ2 “ dimH2,2pX,Qq. Again, the only part which remains unclear is the transcendental
motive tpXq “ pX,π4,tr

X , 0q. The above decompositions are so called refined Chow–Künneth
decompositions, see [36, Ch. 6.1]. The Chow and cohomology groups of the transcendental
motives are given by:

H˚ptpSqq “ H2ptpSqq “ T pSqQ and CH˚ptpSqq “ CH2ptpSqq “ CH0pSqhom,Q,

H˚ptpXqq “ H4ptpXqq “ T pXqQ and CH˚ptpXqq “ CH3ptpXqq “ CH1pXqhom,Q,

where T pSq and T pXq are the transcendental lattices.

Remark 1.1. One can also consider the following (coarser) decomposition of the motive of a
cubic fourfold X, which will be used in the proof of Theorem 0.4. Let h P CH1pXq be the class
of a hyperplane section and pt the class of any closed point. Define the primitive projector
πpr
X “ r∆Xs ´ rptˆXs ´ 1

3 rh
3ˆhs ´ 1

3 rh
2ˆh2s ´ 1

3 rhˆh
3s ´ rX ˆ pts and the primitive motive

hprpXq “ pX,πpr
X , 0q. There is a decomposition:

hpXq » 1‘ L‘ L2 ‘ hprpXq ‘ L3 ‘ L4.

Recall the notion of a surjective morphism of motives f : M //N . It means that the induced
map CH˚pM b hpZqq //CH˚pN b hpZqq is surjective for all smooth projective varieties Z, cf.
[36, Sec. 5.4]. Equivalently, f admits a right inverse and N becomes a direct summand of M ,
see [36, Ex. 2.3.(vii), Lem. 5.4.3]. It is well known (cf. [45, Lem. 3.2], [11, Lem. 4.3]) that it
suffices to check surjectivity of CHipMKq //CHipNKq for all function fields:

Lemma 1.2. Let M “ pX, p,mq, N “ pY, q, nq P MotC and f P HompM,Nq a morphism of
motives. Assume that pfKq˚ : CHipMKq //CHipNKq is surjective for all finitely generated field
extensions C Ď K. Then f is surjective.
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Proof. Let Z be any variety over C. The proof proceeds by induction on the dimension of Z, the
case of dimension zero being trivial. Let K be the function field of Z and γ P CHipN b hpZqq.
We write γ|NK

for the pullback of γ to NK . By assumption, there exists δ P CHipMKq such
that pfKq˚δ “ γ|NK

. Denote by δ̄ the closure of δ in X ˆ Z. Then γ ´ pfZq˚δ̄ is supported on
Y ˆ Z 1 for some closed proper subvariety Z 1 Ď Z and we conclude by induction. 2

In Section 3 we will also include some comments on the notion of finite dimensionality in the
sense of Kimura and O’Sullivan, see e.g. [36, Ch. 4]. The following key result is essentially due
to Kimura:

Proposition 1.3. Let M //N be a surjective morphism of motives. If M is finite dimensional,
then N is finite dimensional. If M » M1 ‘M2, then M1 and M2 are finite dimensional if
and only if M is finite dimensional. Moreover, if X // Y is a dominant morphism of smooth
projective varieties and hpXq is finite dimensional, then so is hpY q.

Proof. The first assertion is proven in [26, Prop. 6.9] and the statement about direct summands
is an immediate consequence. The last assertion follows from the observation that any dominant
morphism of varieties gives rise to a surjective morphism of motives, see [36, Ex. 5.4.2]. 2

To conclude this section, observe that the Chow motive of a hyperkähler variety is in fact a
birational invariant. Indeed, for two birational hyperkähler varieties X and X 1 one can always
find families X and X 1 over a smooth quasi-projective curve C, which are isomorphic away from
a point 0 P C with central fibres X “ X0 resp. X 1 “ X 10 (cf. [22, Thm. 10.12], [39, Prop. 2.1]).
This can be used to show that their Chow rings CH˚pXq and CH˚pX 1q are isomorphic [39, Thm.
3.2]. The same proof also shows that their Chow motives are isomorphic, see also [44, Sec. 1.6]:

Proposition 1.4. Let X and X 1 be birational hyperkähler varieties. There is an isomorphism
of Chow motives

hpXq » hpX 1q. 2

Our result therefore also applies to any hyperkähler variety which is birational to a moduli
space as in Theorem 0.1.

2. Motives of moduli spaces of stable sheaves

2.1. Moduli spaces of stable sheaves on a K3 surface. This section contains the proof of
Theorem 0.1. Let S be a projective K3 surface or an abelian surface. Assume first that M is a
smooth projective moduli space of stable sheaves on S. The general case of a moduli space of
stable objects in DbpS, αq is treated at the end of the proof.

Proof of Theorem 0.1. Let E be a quasi-universal sheaf on M ˆS and F its transpose on SˆM .
We use the following notation for the projections:
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M ˆ S ˆM

M ˆ S M ˆM S ˆM

π12
π

π23

and E “ π˚12pEq, F “ π˚23pF q for the pullbacks. Consider the complex

W “ Ext‚πpE ,Fqr1s P DbpM ˆMq

whose cohomology sheaves are the relative extension sheaves ExtiπpE ,Fq “ Ripπ˚ ˝HomqpE ,Fq.
Note that in our case only Ext1πpE ,Fq and Ext2πpE ,Fq are non-zero. A computation of the Chern
classes due to Markman [33, Thm. 1] yields

cmprW sq “ r∆M s P CHmpM ˆMq, (1)

where m is the dimension of M .

Consider the Chow groups CH˚pM ˆMqQ as a unital ring with convolution of cycles and
unit given by the diagonal. Define the following two-sided ideal generated by correspondences
which factor through some power of S:

I “ xβ ˝ α | α P CH˚pM ˆ SkqQ, β P CH˚pSk ˆMqQ, k ě 1y Ď CH˚pM ˆMqQ.

We will prove that I is closed under intersection products. Let α P CH˚pM ˆ SkqQ, β P
CH˚pSk ˆMqQ, α1 P CH˚pM ˆ Sk

1

qQ, β1 P CH˚pSk
1

ˆMqQ and denote by τ the involution of
M ˆM ˆM ˆM interchanging the middle two factors:

pβ ˝ αq ¨ pβ1 ˝ α1q “ r tΓ∆MˆM
s˚pβ ˝ αˆ β

1 ˝ α1q “ r tΓ∆MˆM
s˚ ˝ τ˚pβ ˆ β

1 ˝ αˆ α1q

“ r tΓτ˝∆MˆM
s˚pβ ˆ β

1 ˝ αˆ α1q “
`

r tΓ∆M
s ˆ r tΓ∆M

s
˘

˚
pβ ˆ β1 ˝ αˆ α1q

“
`

r tΓ∆M
s ˝ β ˆ β1

˘

˝
`

αˆ α1 ˝ rΓ∆M
s
˘

.

The last equality follows from Lieberman’s Lemma, cf. [36, Prop. 2.1.3]. We obtain a correspon-
dence which factors through Sk`k1 , so it is contained in I. We will conclude by showing that
the class of the diagonal is contained in I.

A Grothendieck–Riemann–Roch computation gives:

chprW sq “ ´ch
´

π!rRHompE ,Fqs
¯

“ ´π˚

´

chrRHompE ,Fqs ¨ π˚2 tdpSq
¯

“ ´π˚

´

π˚12chpE_q ¨ π˚23chpF q ¨ π˚2 tdpSq
¯

, (2)

where E_ “ RHompE,OMˆSq denotes the derived dual of E and π2 is the projection to S. Let
α “ ‘αi “ chpE_q ¨ π˚2

a

tdpSq, β “ ‘βi “ chpF q ¨ π˚2
a

tdpSq and n P N. Considering only the
codimension n part of (2) we find that the n-th Chern character is contained in I:

chnprW sq “ ´
ÿ

i`j“n`2

π˚pπ
˚
12α

i ¨ π˚23β
jq P I.
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The codimension n part of the Chern character is given as a sum
p´1qn´1

pn´ 1q!
cn ` p, where p is

a polynomial in the Chern classes of degree less than n. Note that c1 “ ch1 is contained in I
and, therefore, also c2 “

1
2c

2
1 ´ ch2 P I. It follows iteratively that cn P I for all n and therefore

r∆M s P I by (1). Thus, there are cycles γi P CHeipM ˆ SkiqQ, δi P CHdipSki ˆMqQ, for some
ki P N, such that

r∆M s “
ÿ

δi ˝ γi P CHmpM ˆMqQ. (3)

Let δ “
À

δi viewed as a morphism of motives
À

hpSkiqpniq // hpMq with ni “ di ´ 2ki.
Equation (3) asserts that γ “

À

γi defines a right inverse for δ, i.e. the following composition is
the identity:

hpMq
À

hpSkiqpniq hpMq.
γ δ

Hence, hpMq is a direct summand of
À

hpSkiqpniq.
Moreover, we obtain a bound for the exponents ki. Consider the filtration Ik of I generated by

correspondences which factor through Sl with l ď k. With the above notation we have chn P I1

for all n and Ik ¨ Ik1 Ď Ik`k1 . Thus ki ď m “ dimM for all i.
To conclude the proof, we consider the general case of a smooth projective moduli space M of

σ-stable objects in DbpS, αq for a Brauer class α P BrpSq and stability condition σ. It has been
explained in [32, pp. 2–3] that Markman’s formula (1) can be obtained analogously in this case.
The two crucial ingredients are the vanishing of ExtipEx,Fxq for i ‰ 0, 1, 2 and x PM ˆM and
the fact that Ext2πpE ,Fq is a line bundle on the diagonal in M ˆM . Both assertions still hold
true for stable α-twisted sheaves and similarly for stable objects in DbpS, αq. 2

Corollary 2.1. Let S and M be as above. If hpSq is finite dimensional, then hpMq is finite
dimensional as well. 2

Remark 2.2. As mentioned in the introduction, the proof of Theorem 0.1 also applies to moduli
spaces of stable vector bundles of coprime rank and degree on a curve, thus recovering del Baño’s
result [15, Thm. 4.5]. Indeed, it was observed by Beauville [8] that in this case equation (1)
follows from Porteous formula. The same argument may be used in the case of a non-symplectic
surface S with effective anti-canonical bundle and a moduli space of stable sheaves of positive
rank, see [34, Thm. 8]. Here, the vanishing of the extension group Ext2pE,F q for any two
stable sheaves E and F is the key ingredient. For moduli spaces M of stable sheaves on P2, a
description of the Chow ring CH˚pMq was given by Ellingsrud and Strømme [16, Thm. 1.1(iii)].
They proved that the cycle class map is an isomorphism and, therefore, the Chow motive hpMq

is a sum of Lefschetz powers.

Remark 2.3. We expect also that hpSq is motivated by hpMq (see the introduction). This
holds for example in the case of a Hilbert scheme. For fine moduli spaces it would follow from
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a conjecture of Addington [2, Conj.]: A universal sheaf induces a Fourier–Mukai transform
F : DbpSq //DbpMq with right adjoint R. Addington conjectured that the composition of F
and R splits as follows:

R ˝ F » id‘ idr´2s ‘ . . .‘ idr´2n` 2s.

If v and w are the Mukai vectors of the Fourier–Mukai kernels, we obtain:

r∆Ss “
1

n
v ˝ w P CH2pS ˆ SqQ.

It follows as above that hpSq is a direct summand of
À

hpMqpniq for some ni P Z. See for
example [4, Thm. A] for some progress on the conjecture in the case of a moduli space of torsion
sheaves.

2.2. The Fano variety of lines. We provide a short proof of Corollary 0.5. Let X be a cubic
fourfold and F its Fano variety of lines. The Chow groups and motive of F were investigated in
detail by Shen and Vial [44]. They studied Fourier transforms inducing a (particularly interesting)
decomposition of the Chow ring, similar to the case of an abelian variety. The relation between
the Chow groups of F and X given via the universal line (viewed as a correspondence) has been
elucidated as well. We refrain from going into the details and recommend op. cit. for further
reading.

Proposition 2.4. Let X be a cubic fourfold and F its Fano variety of lines. Then the tran-
scendental motive tpXq is a direct summand of hpF qp´1q. In particular, the motive of X is
contained in MotpF q.

Proof. The universal line L P CH3pF ˆXq induces a morphism f of motives:

hpF qp´1q hpXq tpXq.L π4,tr
X

Let K be any finitely generated field extension of C. The only non-trivial rational Chow group
of tpXKq is CH3ptpXKqq » CH1pXKqhom,Q. Indeed, choose an embedding of K into the complex
numbers and denote by Y the base change of XK to C, which is a smooth complex cubic
fourfold. It is well known that the base change map CHiptpXKqq //CHiptpY qq induced by a
field extension is injective up to torsion, see e.g. [9, Lem. 1A.3] and [45, Lem. 1.2]. Now use
that CHiptpY qq vanishes for i ‰ 3. The Chow group of one-cycles is universally generated by
lines [43, Thm. 1.7] and the assertion thus follows from Lemma 1.2. 2

3. Motives of special cubic fourfolds

3.1. Special cubic fourfolds. Recall that cubic fourfolds admitting a labelling of discriminant
d form a divisor Cd Ď C inside the moduli space of smooth complex cubic fourfolds, see [21, Sec.
3.1]. The existence of an associated K3 surface (in a suitable sense) can be characterized solely
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in terms of d. The following numerical conditions have been introduced over the past years (we
use the notation of Addington [3]):

Da, n P Z : a2d “ 2n2 ` 2n` 2, p˚˚˚q

Dn P Z : d | 2n2 ` 2n` 2, p˚˚q

Dk, d0 P Z : d0 satisfies p˚˚q and d “ k2d0. p˚˚1q

There are (strict) inclusions of subsets inside the moduli space C of cubic fourfolds:
ď

p˚˚˚q

Cd Ď
ď

p˚˚q

Cd Ď
ď

p˚˚1q

Cd.

A cubic fourfold admits a labelling of discriminant d satisfying p˚˚1q if and only if there exist a
K3 surface S, a Brauer class α P BrpSq and a Hodge isometry rHpS, α,Zq » rHpAX ,Zq [23, Thm.
1.3]. In this case, we prove that there is an isomorphism of Chow motives tpSqp1q » tpXq. This
generalizes work of Bolognesi, Pedrini [11], and Laterveer [30]. In [11, Thm. 4.13], the authors
obtained such an isomorphism in the case when F pXq » Sr2s. Injectivity has been proven in [30,
Thm. 3.1] for cubic fourfolds invariant under a certain involution. Both cases are instances of
Theorem 0.4, see the comments in Section 3.2. We start with a well known fact:

Lemma 3.1. Let S be a projective K3 surface and X a cubic fourfold. Then CH0pSqhom and
CH1pXqhom are divisible and torsion-free.

Proof. Divisibility of CH0pSqhom is well known and follows easily by constructing a curve through
any two given points and using the Jacobian of the normalization. The theorem of Rojtman [40]
implies that this group is torsion-free. Let F be the Fano variety of lines in X. It is a hyperkähler
variety, so its first Betti number vanishes and it follows as above that CH0pF qhom is divisible
and torsion-free. The universal line L induces a surjection

CH0pF qhom CH1pXqhom,
L˚

hence the assertion follows from the divisibility of KerpL˚q which was proven by Shen and
Vial [44, Thm. 20.5, Lem. 20.6]. 2

Proof of Theorem 0.4. Since C is a universal domain, it suffices to prove the isomorphism on
Chow groups. By a variant of Manin’s identity principle (cf. [20, Lem. 1], [45, Lem. 3.2] or
[11, Lem. 4.3]) this implies tpSqp1q » tpXq. The results of Addington–Thomas [1, Thm. 1.1]
and Huybrechts [23, Thm. 1.4] imply that there is an exact equivalence DbpSq » AX (resp.
DbpS, αq » AX) if X P Cd is generic1and we consider this case first. Assume that α “ 1,

1At the moment, an equivalence Db
pSq » AX (resp. Db

pS, αq » AX) is established only for generic X P Cd. This
gap is expected to be filled soon and would make the last step of the proof superfluous (see the upcoming work of
Bayer, Lahoz, Macrì, Nuer, Perry, Stellari [7]).



10 TIM-HENRIK BÜLLES

i.e. d satisfies (˚˚). Consider the composition Φ of an exact equivalence DbpSq » AX and the
inclusion AX Ď DbpXq. By [37, Thm. 2.2], this functor is of Fourier–Mukai type, i.e. there is a
complex E P DbpS ˆXq, such that for all G P DbpSq:

ΦpGq » p˚pE b q˚pGqq,

where p and q are the projections. It follows that the left adjoint to Φ is of Fourier–Mukai type
as well, say with kernel F . Let v “ chpEq ¨

a

tdpS ˆXq (resp. w) be the Mukai vector of E (resp.
F). It is an algebraic cycle with Q-coefficients on S ˆX which needs not be of pure dimension.
Denote by vi (resp. wi) its codimension i part. Since Φ is fully faithful, the convolution w ˝ v is
rationally equivalent to the class of the diagonal r∆Ss on S ˆ S. More precisely, the following
equality holds in CH2pS ˆ SqQ:

r∆Ss “ w0 ˝ v6 ` w1 ˝ v5 ` w2 ˝ v4 ` w3 ˝ v3 ` w4 ˝ v2 ` w5 ˝ v1 ` w6 ˝ v0. (4)

Recall that the homologically trivial part of the Chow groups of S and X are concentrated in
codimension two and three, respectively. The induced action of v on Chow groups is compatible
with the action on cohomology. Thus, w3 ˝ v3 is the only summand on the right hand side of (4)
acting non-trivially on CH0pSqhom,Q, i.e. the following composition is the identity:

CH0pSqhom,Q CH1pXqhom,Q CH0pSqhom,Q.
v3˚ w3

˚

This proves injectivity of v3
˚. For the surjectivity consider the following diagram:

KpSqQ KpAXqQ KpXqQ

CH˚pSqQ CH˚pXqQ

CH0pSqhom,Q CH1pXqhom,Q.

v

„

φ
v

v˚

v3˚

Commutativity of the middle diagram follows from the Grothendieck–Riemann–Roch Theorem.
It suffices to show that the image of φ : KpAXqQ //CH˚pXqQ contains CH1pXqhom,Q. Indeed,
this would imply that any β P CH1pXqhom,Q lifts to some α P CH˚pSqQ such that v˚pαq “ β.
Since the action of v on cohomology is injective, α is homologically trivial, i.e. α P CH0pSqhom,Q.

Recall that CH1pXq is generated by lines by a result of Paranjape [38], see also [42, Cor. 4.3].
Let i : ` Ď X be the inclusion of a line and consider the associated second syzygy sheaf F` of
I`p1q defined by:

0 F` H0pX, I`p1qq bOX I`p1q 0.ev
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Here, OXp1q is the induced polarization of X Ď P5 and ev is the evaluation map which is
surjective, cf. [27, Lem. 5.1]. A straightforward computation in op. cit. shows that F` is
contained in AX . Next, we compute the Mukai vector of F`:

vpF`q “ vpO‘4
X q ´ vpI`p1qq “ vpO‘4

X q ´ vpOXp1qq ` vpO`p1qq.

Using the Grothendieck–Riemann–Roch Theorem one finds:

vpO`p1qq “ chpO`q ¨ chpOXp1qq ¨ tdpXq
1
2 “ i˚ptdp`qq ¨ chpOXp1qq ¨ tdpXq

´ 1
2

“ pr`s ` rptsq ¨ chpOXp1qq ¨ tdpXq
´ 1

2 ,

where rpts P CH0pXq » Z is the class of any closed point (X is rationally connected). The Todd
class of X is a polynomial in the class of a hyperplane section h “ c1pOXp1qq, in fact

tdpXq “ 1`
3

2
h`

5

4
h2 `

3

4
h3 `

1

3
h4.

Therefore, vpO`p1qq “ r`s `
5
4 rpts and

φprF`s ´ rF`1sq “ vpO`p1qq ´ vpO`1p1qq “ r`s ´ r`
1s,

for each pair of lines ` and `1, which proves surjectivity of φ since CH1pXqhom,Q is generated by
cycles of this form.

So far, we proved that Z “ v3 induces an isomorphism CH0pSqhom,Q
„ //CH1pXqhom,Q. As

mentioned earlier, a variant of Manin’s identity principle gives that Z also induces an isomorphism
of motives tpSqp1q » tpXq, which extends to an isomorphism hpSqp1q » L‘hprpXq‘L3. Indeed,
the Picard rank ρ of S equals ρ2 ´ 1 with ρ2 “ dimH2,2pX,Qq. Thus, there are cycles W ,
W 1 P CH3pS ˆXqQ such that

tW 1 ˝W “ r∆Ss, W ˝ tW 1 “
1

3
rh3 ˆ hs ` πpr

X `
1

3
rhˆ h3s. (5)

This will be useful for the specialization argument below.

Next, assume that d satisfies (˚˚1), i.e. DbpS, αq » AX . The composition with the inclusion is
again of Fourier–Mukai type by [12, Thm. 1.1]) and the formalism of Mukai vectors works in the
twisted case as well, see [25, Sec. 1] for details. For E P CohpS ˆX,α´1 b 1q locally free and
n “ ordpαq the order of the Brauer class, Ebn is naturally an untwisted sheaf and one defines
(cf. [24, Sec. 2.1])

vpEq “ n
a

chpEbnq ¨
a

tdpS ˆXq.

The n-th root can be obtained formally, since rkpEq ‰ 0. Using a locally free resolution, this
definition extends to all twisted coherent sheaves. Define the cycle Z as above. The proof now
works analogously, replacing DbpSq by DbpS, αq and KpSq by KpS, αq.
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Finally, we prove the assertion for any X0 P Cd via specialization. Let T Ď Cd be a curve
passing through the point corresponding to X0 such that there are families of K3 surfaces (resp.
cubic fourfolds) S and X over T with an exact equivalence DbpSsq » AXs over a very general
point s P T and X0 » X0 for a closed point 0 P T , see [1, Thm. 1.1]. Write S0 for the fibre of S
over 0.

By a standard argument (see e.g. [41, Lem. 8]) we may assume that T is the spectrum of
a complete discrete valuation ring R » CJtK with generic point η and closed point 0. Write
K “ Cpptqq for its fraction field and K̄ for an algebraic closure of K.

Let W , W 1 P CH3pSη̄ ˆK̄ Xη̄q be as above, such that (5) holds. In fact, all cycles of (5) are
defined over a finite extension Cppt

1
n qq of K. Replacing R by CJt

1
n K, we may assume that the

cyclesW andW 1 are defined over K. Recall the specialization map for Chow groups (see [18, Ch.
10.1] for details), which is compatible with intersection product, pullback and proper pushforward.
We obtain cycles W0, W 1

0 P CH3pS0 ˆ X0qQ such that equalities of the form (5) hold. Thus,
W0 induces an isomorphism of motives hpS0qp1q » L ‘ hprpX0q ‘ L3. The action on Chow
groups restricts to an isomorphism of homologically trivial cycles CH0pSqhom,Q

„ //CH1pXqhom,Q

induced by π4,tr
X0
˝W0 ˝ π

2,tr
S0

. In fact, CH0pSqhom and CH1pXqhom are both divisible and torsion-
free, see Lemma 3.1. Hence, tensoring with Q is a bijection and we obtain an isomorphism of
integral Chow groups. 2

Corollary 3.2. Let X P Cd be a special cubic fourfold with d satisfying (˚˚1) and S an associated
(twisted) K3 surface. Then hpXq is finite dimensional if and only if hpSq is finite dimensional.
Moreover, if ρ2 “ dimH2,2pX,Qq ě 20, then hpXq is finite dimensional.

Proof. The above theorem evidently implies hpXq » 1‘ hpSqp1q‘L2‘L4. This proves the first
assertion. If ρ2 “ dimH2,2pX,Qq ě 20, then the Picard rank of S is at least 19 and, therefore,
S admits a Shioda–Inose structure, cf. [35, Cor. 6.4]. The motive of an abelian variety is finite
dimensional, see e.g. [36, Ch. 4.6, Thm. 2.7.2]. Thus, hpSq is finite dimensional and we conclude
using Proposition 1.3. 2

3.2. Examples. This section contains a comparison with the work of Bolognesi, Pedrini [11] and
some applications of Theorem 0.4. In each example, the relation on the level of motives between
the K3 surface and the cubic fourfold becomes visible by a concrete geometric construction.

Example 3.3 (Cubic fourfolds containing a plane). Consider the divisor C8 Ď C. It corresponds
exactly to the cubic fourfolds X containing a plane, cf. [46, Sec. 3]. In this case, there is the
following standard construction: Let rX be the blow-up of X along a plane P . Projecting X from
P onto a disjoint plane in P5 yields a rational map which can be resolved to give a morphism
q : rX //P2. The fiber of q over a point x P P2 is the residual surface of the intersection xP XX.
Generically, it is a smooth quadric surface, i.e. isomorphic to P1 ˆ P1 and has two different
rulings. The discriminant divisor of q is a sextic curve in P2, which is smooth if and only if X
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does not contain any other plane meeting P , see e.g. [6, Prop. 4.1]. The fibres over points of
the discriminant curve are singular with only one ruling. More precisely, let F p rX{P2q be the
relative Fano variety of lines with universal line L Ď F p rX{P2q ˆ rX. The projection L //P2

factors through a double cover S //P2 branched along a sextic curve, which is smooth for
a general choice of X. Thus, S is a K3 surface. The projection L //S is a P1-bundle (a
Brauer–Severi variety) and induces a Brauer class α P BrpSq. Kuznetsov showed that there is
an exact equivalence DbpS, αq » AX , cf. [28, Thm. 4.3].

It is well known that rationality of the cubic fourfold X follows, if q has a rational section.
This holds true if there is an additional surface W Ď X such that degpW q ´ xP,W y is odd. In
this case, it was observed in [11, Sec. 8] that the isomorphism tpSqp1q » tpXq would follow from
finite dimensionality of hpSq. In fact, Theorem 0.4 implies that the isomorphism tpSqp1q » tpXq

holds without any further assumptions.

Example 3.4 (Cubic fourfolds with an automorphism of order three). Let X be a cubic fourfold
given by an equation of the form

fpx0, x1, x2q ´ gpx3, x4, x5q “ 0,

where f and g are homogeneous polynomials of degree three. Denote by ζ3 a primitive third
root of unity. Then X is invariant under the automorphism σ of P5 given by

rx0 : x1 : x2 : x3 : x4 : x5s
� // rx0 : x1 : x2 : ζ3x3 : ζ3x4 : ζ3x5s.

Thus, there is an induced automorphism σF of the Fano variety F pXq, which is in fact symplectic,
i.e. σF |H2,0 “ id, see e.g. [17] for a classification of polarized symplectic automorphisms of F pXq.
Consider the cubic surfaces Z1 “ tfpx0, x1, x2q ´ s

3 “ 0u and Z2 “ tgpx3, x4, x5q ´ t
3 “ 0u in

P3 with s resp. t as additional variables. The rational map

prx0 : x1 : x2 : ss, rx3 : x4 : x5 : tsq � // r
x0

s
:
x1

s
:
x2

s
:
x3

t
:
x4

t
:
x5

t
s

induces a degree three morphism Z1 ˆ Z2
: //X from the blow-up of Z1 ˆ Z2 along E1 ˆ E2.

Here, Ei is the cubic curve in Zi defined by the vanishing of s resp. t, see e.g. [13, Prop. 1.2].
Note that finite dimensionality of hpXq follows from Proposition 1.3 since rational surfaces

have finite dimensional motives. Moreover, this morphism can be used to find two disjoint planes
P1 and P2 contained in X; if `i Ď Zi are lines (recall that Zi contains 27 of them) the image of
the product `1 ˆ `2 is a plane in X and certain choices of lines produce disjoint planes, cf. [13,
Rem. 2.4]. There is a birational map from P1 ˆ P2 to X sending a pair of points px, yq to the
residual point of the intersection xy XX. The indeterminacy locus S Ď P1 ˆ P2 parametrizes
lines contained in X joining the two planes. It is a complete intersection of divisors of type
p1, 2q and p2, 1q, i.e. S is a K3 surface, see [19, Ex. 5.9]. Resolving the indeterminacy locus
gives an isomorphism BlSpP1 ˆ P2q

„ //BlP1YP2pXq which induces tpSqp1q » tpXq by comparing
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homologically trivial cycles. In fact, the cubic fourfold X satisfies condition p˚˚˚q, since the
Fano variety of X is birational to the Hilbert scheme Sr2s.

Example 3.5 (Cubic fourfolds with an involution). Consider the involution σ on P5 given by

rx0 : x1 : x2 : x3 : x4 : x5s
� // rx0 : x1 : x2 : x3 : ´x4 : ´x5s.

A cubic X invariant under σ is always of the form

tF px0, x1, x2, x3q ` x
2
4L1 ` x

2
5L2 ` x4x5L3 “ 0u,

where F is homogeneous of degree three and the Li are linear forms in x0, . . . , x3. Note that the
fixed locus of σ in P5 is the union of P3 “ tx4 “ x5 “ 0u and the line ` “ tr0 : 0 : 0 : 0 : x4 : x5su.
Thus, the fixed locus in X consists of a cubic surface W and the line `.

The fixed locus of the induced symplectic involution on the Fano variety F pXq can be described
as follows. It consists of the line `, the 27 lines contained inW and a K3 surface S. The surface S
parametrizes lines contained in X joining W and `. It is a double cover of the cubic W branched
along the degree 6 curve L2

3 ´ L1L2. This suggests that S is associated to X: The inclusion
S Ď F pXq induces an isomorphismH2,0pF pXqq » H2,0pSq and an isomorphism of transcendental
lattices. Composing with the incidence correspondence, we get T pSqp´1q » T pXq. It is not
directly obvious that this is an isometry. An isomorphism tpSqp1q » tpXq was nevertheless
established by Bolognesi and Pedrini [11, Sec. 5.2] building on work of Laterveer [30, Thm. 3.1].

Example 3.6 (Cyclic cubic fourfolds). Let fpx0, . . . , x4q be a homogeneous polynomial of degree
three, defining a smooth cubic threefold Y Ď P4. A cyclic cubic fourfold is a triple cover X //P4

ramified along Y . It is a smooth cubic hypersurface X Ď P5 with an equation:

fpx0, . . . , x4q ` x
3
5 “ 0

and covering automorphism σ : X
„ //X given by:

rx0 : x1 : x2 : x3 : x4 : x5s
� // rx0 : x1 : x2 : x3 : x4 : ζ3x5s.

It was shown in [29, Thm. 3.1] that the motive of a cyclic cubic fourfold X is finite dimensional.
If X satisfies condition (˚˚1) and S is an associated (twisted) K3 surface, then tpSqp1q » tpXq

and hpSq is finite dimensional as well. Unfortunately, it is not clear which K3 surfaces can be
associated to X as above. Note that the family of cyclic cubic fourfolds contains the Fermat cubic,
so in particular it has non-trivial intersection with the divisor C8 of cubic fourfolds containing a
plane. However, there exists an example of a cyclic Pfaffian cubic fourfold containing no plane,
see [10, Prop. 5.1].

References

[1] N. Addington and R. Thomas, Hodge theory and derived categories of cubic fourfolds, Duke Math. J. 163
(2014), no. 10, 1885–1927.



MOTIVES OF MODULI SPACES AND OF SPECIAL CUBIC FOURFOLDS 15

[2] N. Addington, New derived symmetries of some hyperkähler varieties, Algebr. Geom. 3 (2016), no. 2,
223–260.

[3] N. Addington, On two rationality conjectures for cubic fourfolds, Math. Res. Lett. 23 (2016), no. 1, 1–13.
[4] N. Addington, W. Donovan, and C. Meachan, Moduli spaces of torsion sheaves on K3 surfaces and derived

equivalences, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 846–865.
[5] D. Arapura, Motivation for Hodge cycles, Adv. Math. 207 (2006), no. 2, 762–781.
[6] A. Auel, J.-L. Colliot-Thélène, and R. Parimala, Universal unramified cohomology of cubic fourfolds containing

a plane, Brauer groups and obstruction problems, Progr. Math., vol. 320, Birkhäuser/Springer, Cham, 2017,
pp. 29–55.

[7] A. Bayer, M. Lahoz, E. Macrì, M. Nuer, A. Perry, and P. Stellari, Stability conditions in families and families
of hyperkähler varieties, http://www.maths.ed.ac.uk/~abayer/Oberwolfach-report.pdf accessed June 6,
2018.

[8] A. Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis
(Bombay, 1992), Tata Inst. Fund. Res., Bombay, 1995, pp. 37–40.

[9] S. Bloch, Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University, Mathematics
Department, Durham, N.C., 1980.

[10] S. Boissière, C. Camere, and A. Sarti, Cubic threefolds and hyperkähler manifolds uniformized by the
10-dimensional complex ball, 2017, arXiv:1801.00287.

[11] M. Bolognesi and C. Pedrini, Rationality questions and motives of cubic fourfolds, 2017, arXiv:1710.05753.
[12] A. Canonaco and P. Stellari, Twisted Fourier–Mukai functors, Adv. Math. 212 (2007), no. 2, 484–503.
[13] J.-L. Colliot-Thélène, CH0-trivialité universelle d’hypersurfaces cubiques presque diagonales, Algebr. Geom.

4 (2017), no. 5, 597–602.
[14] M. A. A. de Cataldo and L. Migliorini, The Chow groups and the motive of the Hilbert scheme of points on

a surface, J. Algebra 251 (2002), no. 2, 824–848.
[15] S. del Baño, On the Chow motive of some moduli spaces, J. Reine Angew. Math. 532 (2001), 105–132.
[16] G. Ellingsrud and S. A. Strømme, Towards the Chow ring of the Hilbert scheme of P2, J. Reine Angew.

Math. 441 (1993), 33–44.
[17] L. Fu, Classification of polarized symplectic automorphisms of Fano varieties of cubic fourfolds, Glasgow

Math. J. 58 (2015), no. 01, 17–37.
[18] W. Fulton, Intersection Theory, Springer Berlin Heidelberg, 1984.
[19] S. Galkin and E. Shinder, The Fano variety of lines and rationality problem for a cubic hypersurface, 2014,

arXiv:1405.5154.
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