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Introduction

Given a moduli space M of stable sheaves on a variety S, one expects that certain invariants
of M are determined by the geometry of S. This question can be studied on various levels,
including derived categories, Hodge structures and algebraic cycles. We will focus on the Chow
groups and motives in the case of a K3 surface (or an abelian surface) S.

The analogous question for moduli spaces of stable vector bundles on a curve has been studied
by del Baño [22]. He showed that the Chow motive of the moduli space is contained in the
full pseudo-abelian tensor subcategory generated by the motive of the curve and the Lefschetz
motive. For surfaces, a natural notion of stability for sheaves is provided by Gieseker stability
(with respect to some polarization). More generally, we will consider stability for α-twisted
sheaves with α P BrpSq a Brauer class. The case of a moduli space of Gieseker stable sheaves
corresponds to the trivial Brauer class α “ 1. The first main result of this thesis is:

Theorem 0.1. Let S be a complex projective K3 surface or an abelian surface and α P BrpSq.
Assume that M is one of the following:

‚ a smooth projective moduli space of Gieseker stable α-twisted sheaves or
‚ a moduli space of σ-stable objects in DbpS, αq with primitive Mukai vector and generic
stability condition σ P Stab:pS, αq.

Then the Chow motive hpMq of M is a direct summand of a motive
À

hpSkiqpniq for some
1 ď ki ď dimM , ni P Z.

As a direct consequence, finite dimensionality of the motive of S implies the same for M :

Corollary 0.2. Let S and M be as above. If hpSq is finite dimensional, then hpMq is finite
dimensional as well. 2

The author was partially supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic
Varieties’ of the DFG (German Research Foundation).
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The second half of this thesis has a similar flavour; we investigate the relation between K3
surfaces and cubic fourfolds on the level of algebraic cycles. Recall the divisors Cd Ď C of smooth
complex cubic fourfolds admitting a labelling of discriminant d (see Section 1 for a brief review
of the relevant notions). We prove the following result:

Theorem 0.3. Let X P Cd be a special cubic fourfold. Assume that there exist a K3 surface
S, a Brauer class α P BrpSq and a Hodge isometry rHpS, α,Zq » rHpAX ,Zq. Then there is a
cycle Z P CH3pS ˆ Xq inducing an isomorphism of Chow groups CH0pSqhom

„ //CH1pXqhom

and transcendental motives tpSqp1q » tpXq.

A (twisted) K3 surface and a Hodge isometry rHpS, α,Zq » rHpAX ,Zq as above exist if and
only if d satisfies the numerical condition (˚˚1) (see Definition 1.5).

The two results fit into the following picture. For a variety X we denote by MotpXq the full
pseudo-abelian tensor subcategory of motives generated by hpXq and the Lefschetz motive L.
Let now X be a cubic fourfold and F its Fano variety of lines, which is a hyperkähler variety of
dimension four. It is known that the motive of F is contained in MotpXq (we say that hpF q
is motivated by hpXq following Arapura [5]). Indeed, Laterveer proved a formula for Chow
motives (which is similar to the result obtained by Galkin–Shinder [26] in the Grothendieck ring
of varieties):

Proposition 0.4 (Laterveer [44]).

hpF qp2q ‘
4
à

i“0

hpXqpiq » hpXr2sq.

Since the Hilbert scheme Xr2s can be described as a blow-up of the symmetric product Xp2q

along the diagonal, its motive is motivated by hpXq. In Section 2 we will argue that hpXq is
also motivated by hpF q (see also [14, Thm. 4.5]):

Corollary 0.5. Let X be a cubic fourfold and F its Fano variety of lines. The full pseudo-abelian
tensor categories of motives generated by the Lefschetz motive and hpXq resp. hpF q agree:

MotpXq “ MotpF q.

In particular, hpXq is finite dimensional if and only if hpF q is so.

To compare this result with Theorem 0.1, assume that X is a special cubic fourfold satisfying
condition (˚˚1). This is equivalent to the Fano variety F being birational to a moduli space M
of stable twisted sheaves on a K3 surface S (cf. [33, Prop. 4.1]). In this case, all of the following
categories of motives agree:

MotpSq “ MotpMq “ MotpF q “ MotpXq.
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Indeed, we know that birational hyperkähler varieties have isomorphic Chow motives (see
e.g. Theorem 2.14). This induces the middle equality. It follows from Theorem 0.3 that
MotpSq “ MotpXq. For an arbitrary complex projective K3 surface and a moduli space M as in
Theorem 0.1 we have at least an inclusion MotpMq Ď MotpSq which we expect to be an equality
as well (see Remark 2.28 for some comments).

Acknowledgements. I would like to thank all members of the Complex Geometry Group Bonn
for thorough support. I am particularly grateful to Daniel Huybrechts for invaluable suggestions
and explanations. This thesis has benefited from many (controversial) discussions with Thorsten
Beckmann, whom I wish to thank sincerely. Finally, many thanks to Axel Kölschbach and
Andrey Soldatenkov for helping to improve the exposition.

Notations and Conventions. We will work over the complex numbers unless otherwise stated.
The bounded derived category of coherent sheaves on a smooth projective variety X is denoted
by DbpXq. Morphisms between triangulated categories are assumed to be exact and C-linear.
Throughout this thesis, all motives are meant to be Chow motives in the sense of Subsection 2.1.

1. Cubic fourfolds and their Fano varieties

We review the main facts about cubic fourfolds and the connection to their Fano varieties
of lines. The recent survey article [29] provides a more detailed account. See also [10]. It is a
classical (and certainly very difficult) problem to determine which cubic fourfolds are rational
and we will not touch upon this question at all. Instead, we aim to study the connection between
special cubic fourfolds and K3 surfaces on the level of cycles.

1.1. General facts on cubic fourfolds. A cubic fourfold is a smooth complex cubic hyper-
surface X Ď P5. The moduli stack of cubic fourfolds is a Deligne–Mumford stack with coarse
moduli space C. It is a quasi-projective variety of dimension 20 and will be important in the
sequel. One can describe C as a GIT quotient (see [51, Ch. 4.2]):

C “ U{PGL6,

where U is the open subset of the complete linear system |OP5p3q| parametrizing smooth cubic
fourfolds.

The cohomology of a cubic fourfold X is well understood (see e.g. [10]); it is torsion-free and
the primitive cohomology sits in degree four. Its particular shape suggests that a part of the
Hodge structure comes from a K3 surface (see [57] or [29, Section 3.1] for more details behind
this philosophy). The integral Hodge conjecture holds for cubic fourfolds [67, Thm. 18] and the
cycle class map is injective [18, Prop. 5.1] in codimension two. Therefore

CH2pXq H2,2pX,Zq„
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and if X is very general, any surface is homologous to a multiple of h2, with h “ c1pOXp1qq the
class of a hyperplane section. Thus, rkpH2,2pX,Zqq “ 1 in this case.

Definition 1.1. A cubic fourfold X is called special if rkpH2,2pX,Zqq ě 2. A labelling is
a primitive sublattice K Ď H2,2pX,Zq of rank two containing h2. Its discriminant is the
determinant of the intersection form on K. One defines Cd as the set of cubic fourfolds admitting
a labelling of discriminant d.

The sets Cd have been introduced by Hassett who proved the following result (cf. [28, Thm.
1.0.1]):

Theorem 1.2 (Hassett). For each d the set Cd Ď C is an irreducible divisor. It is non-empty if
and only if d ą 6 and d ” 0, 2 mod 6.

The existence of a labelling of discriminant d (for certain values of d) has very concrete
consequences for the Hodge structure resp. derived category of X and the geometry of its Fano
variety as will be explained later on. For the moment, we only recall a theorem of Hassett (cf.
[28, Thm. 1.0.2]) which gives the connection between cubic fourfolds and K3 surfaces on the
level of Hodge structures:

Theorem 1.3 (Hassett). Let X be a cubic fourfold. There exist a labelling K Ď H2,2pX,Zq, a
polarized K3 surface S and a Hodge isometry H2pS,Zqprp´1q » KK if and only if X P Cd with
d not divisible by 4, 9 or any odd prime p ” 2 mod 3.

1.2. Kuznetsov component of the derived category. Fix a cubic fourfold X. It was
observed by Kuznetsov [40] that the derived category ofX admits a distinguished semi-orthogonal
decomposition:

DbpXq “ xAX ,OX ,OXp1q,OXp2qy.

Kuznetsov investigated the category AX in detail and found that it behaves similarly to the
derived category of a K3 surface. Indeed, its Serre functor is a double shift r2s and its Hochschild
homology is isomorphic to the one of a K3 surface. He conjectured that X is rational if and
only if DbpSq » AX for some projective K3 surface S.

Addington and Thomas introduced a lattice rHpAX ,Zq of rank 24 for AX , which comes with a
natural weight two Hodge structure (see [1, Section 2]). Roughly, it is the orthogonal complement
of the classes of OX , OXp1q, OXp2q in KtoppXq with respect to the Euler pairing. The Hodge
structure is pulled back from H˚pX,Zq via the Mukai vector. Abstractly, the lattice rHpAX ,Zq
is isomorphic to the even, unimodular lattice E‘2

8 p´1q ‘ U‘4 with signature p4, 20q, where U is
the hyperbolic plane. It is an analogue of the Mukai lattice of a K3 surface S and, in fact, it
agrees with it in the case DbpSq » AX .

Remark 1.4. Be aware that (with our convention) the Mukai pairing on a K3 surface satisfies
pvpEq, vpFqq “ ´χpE ,Fq, and similarly the bilinear form on rHpAX ,Zq is given by ´χ.
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1.3. The Fano variety of lines. Given a cubic fourfold X Ď P5, its Fano variety of lines
F pXq is a smooth projective variety of dimension four. It was shown by Beauville and Donagi
[10] that F pXq is a hyperkähler variety, i.e. it is simply connected and admits a (up to scalars)
unique, everywhere non-degenerate holomorphic two-form (see also [32, Ch. 4] for examples of
hyperkähler varieties). Moreover, the universal line L Ď F pXq ˆX induces a Hodge isometry,
known as the Abel–Jabobi map, between the primitive cohomologies

H4pX,Zqpr H2pF pXq,Zqprp´1q.„

The polarization on F pXq is given via the Plücker embedding and H2pF pXq,Zq is equipped
with the Beauville–Bogomolov form (see e.g. [32, Ch. 5]).

1.4. Associated K3 surfaces. Hassett described how in certain cases a K3 surface is associated
to a cubic fourfold X on the level of Hodge structures. In fact, there are other ways a K3 surface
can be associated to X and we try to give an overview with the table below. To characterize
special cubic fourfolds contained in a divisor Cd we will use the following numerical conditions
on d:

Definition 1.5.

Da, n P Z : a2d “ 2n2 ` 2n` 2, p˚˚˚q

Dn P Z : d | 2n2 ` 2n` 2, p˚˚q

Dk, d0 P Z : d0 satisfies p˚˚q and d “ k2d0. p˚˚1q

Remark 1.6. Alternatively, the conditions may be called (K3r2s), (K3) resp. (K31) referring to
their geometric meaning (see table below). It can be shown that p˚˚q is equivalent to Hassett’s
condition (Theorem 1.3).

There are (strict) inclusions of dense subsets inside the moduli space C of cubic fourfolds:
ď

p˚˚˚q

Cd Ď
ď

p˚˚q

Cd Ď
ď

p˚˚1q

Cd.

As a culmination of results (see [1, 3, 7, 33]) these sets are characterized in several equivalent
ways. In each case, the condition means that X satisfies (˚˚) resp. (˚˚1) if and only if there
exists some K3 surface with the given property. We use the following notation:

‚ X is a special cubic fourfold with a labelling K Ď H2,2pX,Zq,
‚ S is a projective K3 surface,
‚ T pSq is the orthogonal complement of H1,1pS,Zq in H2pS,Zq,
‚ T pXq is the orthogonal complement of H2,2pX,Zq in H4pX,Zq,
‚ α P BrpSq is a Brauer class,
‚ MHpv, αq is a moduli space of Gieseker stable α-twisted sheaves with Mukai vector v
on S. Here, we consider Gieseker stability with respect to an ample line bundle H which
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is generic for v. See Subsection 2.4 for a brief review. If the Brauer class vanishes, we
omit it from the notation.

‚ Mσpv, αq is a moduli space of σ-stable objects in DbpS, αq with Mukai vector v, where
σ P Stab:pS, αq is a generic stability condition. If the Brauer class vanishes, we omit it
from the notation.

Ť

p˚˚q

Cd
Ť

p˚˚1q

Cd

Hodge theory H2pS,Zqprp´1q » KK

ðñ T pSqp´1q » T pXq

ðñ rHpS,Zq » rHpAX ,Zq rHpS, α,Zq » rHpAX ,Zq
Derived category1 DbpSq » AX DbpS, αq » AX

Hyperkähler MHpvq „ F pXq birational MHpv, αq „ F pXq birational
ðñ Mσpvq » F pXq Mσpv, αq » F pXq

Remark 1.7. For the condition p˚˚˚q there is only one notable equivalent characterization,
namely that the Fano variety F pXq is birational to the Hilbert scheme of a K3 surface S:

X P Cd for some d satisfying p˚˚˚q ðñ F pXq „ Sr2s.

2. Motives of hyperkähler varieties

This section is divided into two parts. The first half serves as a recollection of the basic facts
about Chow groups and motives. Since the literature is vast (see e.g. [52]), we will review only
parts of the general theory and focus on the motives of K3 surfaces and cubic fourfolds. We
also include some remarks on the notion of finite dimensionality in the sense of Kimura and
O’Sullivan. The second half deals with motives of hyperkähler varieties and contains the proof
of Theorem 0.1.

2.1. Motives. Let X be a smooth projective variety. The Chow groups CHipXq (resp. CHipXq)
are constructed by using codimension (resp. dimension) i algebraic cycles modulo rational
equivalence. When working with rational coefficients, we use a subscript ‘Q’. The homologically
trivial cycles (with respect to some fixed Weil cohomology theory) are denoted with a subscript
‘hom’.

Definition 2.1. The objects of the category MotC of (Chow) motives are triples pX, p,mq, with
X a smooth projective variety over C, p P CHdimpXqpX ˆ XqQ a projector (with respect to

1At the moment, an equivalence Db
pSq » AX (resp. Db

pS, αq » AX) is established only for generic X P Cd. This
gap is expected to be filled soon (see the upcoming work of Bayer, Lahoz, Macrì, Nuer, Perry, Stellari [6]).
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convolution) and m an integer. Morphisms are defined by

HomppX, p,mq, pY, q, nqq “ q ˝ CHdimpXq`n´mpX ˆ Y qQ ˝ p.

The motive hpXq “ pX, r∆Xs, 0q is called the motive of X. Define the Lefschetz motive
L “ pP1, rP1 ˆ pts, 0q » pSpecpCq, r∆s,´1q and the motive of a point 1 “ hpSpecpCqq.

Remark 2.2. The category MotC is pseudo-abelian by construction. Defining the product
hpXq b hpY q “ hpX ˆ Y q for smooth projective varieties X, Y gives MotC the structure of a
rigid tensor category. See [52] for details. One writes Mpkq for M b Lk.

To each motive M “ pX, p,mq one can associate its Chow and cohomology groups

CHipMq “ HompLi,Mq “ p˚CHi`mpXqQ and H ipMq “ p˚H
i`mpXq.

Here, H is any Weil cohomology theory; we will use singular cohomology with rational coefficients.
It is a natural question whether the decomposition H˚pMq “

à

H ipMq can be lifted to the
level of motives. More precisely, the Chow–Künneth conjecture asks for a decomposition of the
diagonal by algebraic projectors πi inducing the projection on the i-th summand on cohomology.
The corresponding isomorphism of motives hpXq »

à

hipXq, with hipXq “ pX,πi, 0q, is called
a Chow–Künneth decomposition. Such projectors exist for surfaces and complete intersections
(cf. [52, Ch. 6, Appendix C]). The following refinements will be important later on:

Theorem 2.3. Let S be a projective K3 surface and X a cubic fourfold. Then the Chow–
Künneth conjcture holds for S and X. More precisely, there are equations in CH2pS ˆ SqQ and
CH2pX ˆXqQ:

r∆Ss “ π0
S ` π

2,alg
S ` π2,tr

S ` π4
S ,

r∆Xs “ π0
X ` π

2
X ` π

4,alg
X ` π4,tr

X ` π6
X ` π

8
X ,

inducing (refined) Chow–Künneth decompositions

hpSq » 1‘ h2,alg
S ‘ tpSq ‘ L2,

hpXq » 1‘ L‘ h4,alg
X ‘ tpXq ‘ L3 ‘ L4.

The motives tpSq “ pS, π2,tr
S , 0q and tpXq “ pX,π4,tr

X , 0q are called the transcendental motives
of S and X. Moreover, h2,alg

S » L‘ρ, h4,alg
X » pL2q‘ρ2 with ρ the Picard rank of S and

ρ2 “ dimH2,2pX,Qq. The Chow groups are given by:
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h2,alg
S tpSq h4,alg

X tpXq

CH0

CH1 NSpSqQ

CH2 CH0pSqhom,Q CH2pXqQ

CH3 CH1pXqhom,Q.

CH4

Proof. The refined Chow–Künneth decomposition for surfaces is defined in [52, Ch. 6] and in the
case of a K3 surface the Albanese and Picard motives vanish. Let `1, . . . , `ρ be an orthogonal
basis of CH1pSqQ » NSpSqQ. Define the following projectors:

π0
S “ rptˆ Ss, π2,alg

S “

ρ
ÿ

i“1

`i ˆ `i
p`iq2

, π4
S “ rS ˆ pts, π2,tr

S “ r∆Ss ´ π
0
S ´ π

2,alg
S ´ π4

S .

For cubic fourfolds one proceeds similarly (cf. [56, Sec. 4]). Let f1, . . . , fρ2 be an orthogonal basis
of CH2pXqQ » H2,2pX,Qq. Let h “ c1pOXp1qq be the class of a hyperplane section. Define the
following projectors:

π0
X “ rptˆXs, π2

X “
1

3
rh3 ˆ hs, π4,alg

X “

ρ2
ÿ

i“1

fi ˆ fi
pfiq2

, π6
X “

1

3
rhˆ h3s, π8

X “ rX ˆ pts,

π4,tr
X “ r∆Xs ´ π

0
X ´ π

2
X ´ π

4,alg
X ´ π6

X ´ π
8
X .

The remaining assertions are easily verified (see loc. cit.). 2

Remark 2.4. The cohomology groups of the transcendental motives are given by:

H˚ptpSqq “ H2ptpSqq “ T pSqQ and H˚ptpXqq “ H4ptpXqq “ T pXqQ,

where T pSq and T pXq are the transcendental lattices.

Remark 2.5. One can also consider the following (coarser) decomposition of the motive of a cubic
fourfold X, which will be used in the proof of Theorem 0.3. As above, let h P CH1pXq be the class
of a hyperplane section. Define the primitive projector πpr

X “ r∆Xs´π
0
X´π

2
X´

1
3 rh

2ˆh2s´π6
X´π

8
X

and the primitive motive hprpXq “ pX,πpr
X , 0q. There is a decomposition:

hpXq » 1‘ L‘ L2 ‘ hprpXq ‘ L3 ‘ L4.

Finally, let us recall the notion of finite dimensionality in the sense of Kimura and O’Sullivan for
motives M “ pX, p,mq P MotC. Note that the symmetric group Sk acts on Xk by permutation
and there are associated projectors altk “

1
k!

ř

πPSk
sgnpπqrΓπs resp. symk “

1
k!

ř

πPSk
rΓπs. One

defines the following two series of motives attached to M :

Definition 2.6. The motives

AltkpMq “ pXk, altk ˝ p
k, kmq and SymkpMq “ pXk, symk ˝ p

k, kmq
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are called the k-th alternating resp. symmetric product of M .

The motive AltkpMq is the motivic analogue of the usual alternating product of H˚pMq in
the case when M has only even cohomology. Analogously, SymkpMq is the analogue of the
alternating product ifM has only odd cohomology and we consider H˚pMq just as a vector space
(without grading). The missing signs in symk take care of the fact that H˚ : MotC // grVectQ

is not a tensor functor (cf. [22, Sec. 3.3.2.] for a discussion of this issue). This motivates the
following definition of finite dimensionality:

Definition 2.7. Let M “ pX, p,mq P MotC be a Chow motive. We say that M is

(1) even finite dimensional, if AltkpMq “ 0 for k " 0,
(2) odd finite dimensional, if SymkpMq “ 0 for k " 0,
(3) finite dimensional, if there exist even resp. odd finite dimensional motives M` and M´

such that M »M` ‘M´.

Conjecture 2.8 (Kimura–O’Sullivan). All motives M P MotC are finite dimensional.

The finite dimensionality conjecture has many interesting consequences and it fits well into
the web of standard conjectures. Unfortunately, up to now the class of motives which are proven
to be finite dimensional is very restricted. It includes for example curves and abelian varieties
(cf. [52, Ch. 4.6, Thm. 2.7.2]). The full pseudo-abelian tensor subcategory of MotC generated
by motives of abelian varieties consists of finite dimensional motives and we will call them of
abelian type (following Vial [66]).

We list a few standard results that will be useful. A morphism of motives f : M //N is
called surjective, if the induced map CH˚pM b hpZqq //CH˚pN b hpZqq is surjective for all
smooth projective varieties Z(cf. [52, Sec. 5.4]). Equivalently, f admits a right inverse and N
becomes a direct summand of M (cf. [52, Ex. 2.3.(vii), Lem. 5.4.3]). Note that it suffices to
check surjectivity of CHipMKq //CHipNKq for all function fields:

Lemma 2.9. Let M “ pX, p,mq, N “ pY, q, nq P MotC and f P HompM,Nq a morphism of
motives. Assume that pfKq˚ : CHipMKq //CHipNKq is surjective for all finitely generated field
extensions C Ď K. Then f is surjective.

Proof. Let Z be any variety over C. The proof proceeds by induction on the dimension of Z, the
case of dimension zero being trivial. Let K be the function field of Z and γ P CHipN b hpZqq.
We write γ|NK for the pullback of γ to NK . By assumption, there exists δ P CHipMKq such
that pfKq˚δ “ γ|NK . Denote by δ̄ the closure of δ in X ˆ Z. Then γ ´ pfZq˚δ̄ is supported on
Y ˆ Z 1 for some closed proper subvariety Z 1 Ď Z and we conclude by induction. 2

Remark 2.10. In fact, it suffices to check surjectivity over C (see [66, Lem. 3.2]).
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Proposition 2.11 (Kimura [37]). Let M //N be a surjective morphism of motives. If M
is finite dimensional, then N is finite dimensional. If M » M1 ‘M2, then M1 and M2 are
finite dimensional if and only if M is finite dimensional. Moreover, if X // Y is a dominant
morphism of smooth projective varieties and hpXq is finite dimensional, then so is hpY q. 2

See [52, Thm. 5.1.4] resp. [52, Ex. 2.8.1(2)] for proofs of the following results.

Lemma 2.12. Let M and N be finite dimensional motives. Then M bN is finite dimensional
as well. 2

Lemma 2.13. Let X be a smooth projective variety and Z Ď X a smooth subvariety of
codimension c. Then

hpBlZpXqq » hpXq ‘
c´1
à

i“1

hpZqpiq.

Thus, hpBlZpXqq is finite dimensional if and only if hpXq and hpZq are finite dimensional. 2

2.2. Hyperkähler varieties. A hyperkähler variety, or irreducible holomorphic symplectic
variety, is a simply connected, smooth projective variety X over C such that H0pX,Ω2

Xq is
spanned by a everywhere non-degenerate holomorphic two-form. This implies that dimpXq is
even. Hyperkähler varieties of dimension two are precisely K3 surfaces. The natural generalization
in higher dimensions are Hilbert schemes Srns of length n subschemes on a K3 surface S. It
was shown by Beauville [9] that they are indeed hyperkähler varieties of dimension 2n. In fact,
all examples of hyperkähler varieties we will consider in this thesis are deformation equivalent
to Srns, i.e. they are of K3rns-type. A major class of examples is provided by moduli spaces of
stable sheaves on K3 surfaces (see Subsection 2.4 for more details).

Studying the motives of hyperkähler varieties has a particularly nice feature: For two birational
hyperkähler varieties X and X 1 one can always find families X and X 1 over a smooth quasi-
projective curve C, which are isomorphic away from a point 0 P C with central fibres X “ X0

resp. X 1 “ X 10 (cf. [32, Thm. 10.12] and [58, Prop. 2.1]). This can be used to show that their
Chow rings CH˚pXq and CH˚pX 1q are isomorphic. The same proof also shows that their Chow
motives are isomorphic (see also [63, Sec. 1.6]):

Theorem 2.14. Let X and X 1 be birational hyperkähler varieties. There is an isomorphism of
Chow motives

hpXq » hpX 1q.

Proof. The following elegant argument is due to Rieß (cf. [58]). Let X , X 1 be as above, η
the generic point of C and K its function field. Denote by rΓηs P CHpXη ˆK X 1ηq the class
of the graph of an isomorphism Xη » X 1η. The key idea is to use specialization for Chow
groups to obtain cycles on X ˆ X 1 inducing an isomorphism of motives. More precisely, let
σ : CHpXη ˆK X 1ηq //CHpX0 ˆ X 10q be the specialization map, which is constructed by taking
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the closure of a cycle and then restricting to the special fibre. It is compatible with intersection
product, pullback and proper pushforward (cf. [25, Ch. 10.1]). Thus,

σpr tΓηsq ˝ σprΓηsq “ σpr tΓηs ˝ rΓηsq “ σpr∆Xη sq “ r∆Xs

and similarly σprΓηsq ˝ σpr tΓηsq “ r∆X 1s. Here, ˝ denotes the convolution of cycles. 2

Remark 2.15. Note that the multiplicativity of the isomorphism can be expressed as an identity
of cycles using the diagonal on Xη ˆK Xη ˆK Xη. Specialization yields that CH˚pXq » CH˚pX 1q

is actually an isomorphism of graded rings.

2.3. K3 surfaces. This subsection contains examples of K3 surfaces with finite dimensional
motive. In all cases, a geometric construction allows one to reduce to the case of an abelian
variety, where finite dimensionality is known. In fact, the Hodge conjecture would imply that
the motive of a K3 surface is always of abelian type (at least in the category of motives up
to homological equivalence; the finite dimensionality conjecture would then give the result for
MotC). This can be deduced from the corresponding result by André ([4, Thm. 7.1]) for so
called motivated motives, which relies on the Kuga–Satake construction.

Recall that a Nikulin involution ι of a K3 surface S is an automorphism of order two, acting
trivially on H2,0pSq. The minimal resolution S1 of the quotient S{ι is again a K3 surface. We
say that S admits a Shioda–Inose structure, if there exists a Nikulin involution, such that S1 is
a Kummer surface with T pSqp2q » T pS1q. This implies ρpSq ě 17 since the Picard rank of a
Kummer surface is at least 17. The classification of K3 surfaces admitting such a structure is
due to Morrison [49].

Proposition 2.16. Let S be a projective K3 surface. Then S admits a Shioda–Inose structure
if and only if one of the following conditions is satisfied:

(1) ρpSq “ 19 or 20,
(2) ρpSq “ 18 and TpSq » U‘ T1, for some lattice T 1,
(3) ρpSq “ 17 and TpSq » U‘2 ‘ T1, for some lattice T 1.

In each case, hpSq is of abelian type; in particular it is finite dimensional.

Proof. For the classification result see [49, Cor. 6.4]. A Kummer surface is dominated by the
blow-up of an abelian surface, thus its motive is of abelian type by Proposition 2.11. Consequently,
if S admits a Shioda–Inose structure, the quotient S{ι has finite dimensional motive. It is known
that symplectic involutions of K3 surfaces act trivially on CH2 (see [69]). Hence, tpSq » tpS{ιq

and hpSq is finite dimensional. 2

The same technique applies to certain K3 surfaces which are given as intersections of three
quadrics in P5. They form a four-dimensional family and come with a symplectic action of
the group pZ{2Zq4. The quotient (of a generic member of the family) is a double cover of P2
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branched along six lines. A concrete geometric description due to Paranjape (cf. [54]) implies
that its motive is finite dimensional.

Proposition 2.17 (Laterveer [41]). Let S Ď P5 be a K3 surface given by three quadratic
equations

a0x
2
0 ` . . .` a5x

2
5 “ 0,

b0x
2
0 ` . . .` b5x

2
5 “ 0,

c0x
2
0 ` . . .` c5x

2
5 “ 0,

with ai, bi, ci P C. Then hpSq is finite dimensional. 2

Remark 2.18. Another family of K3 surfaces with finite dimensional motives may be obtained in
view of Theorem 0.3: A recent result of Laterveer (see [42, Thm. 3.1]) building on a construction
due to van Geemen–Izadi established finite dimensionality for a 10-dimensional family of cubic
fourfolds. More precisely, he proved that hpXq is finite dimensional if X Ď P5 is given by an
equation fpx0, . . . , x4q ` x

3
5 such that f defines a smooth cubic threefold (this family has also

been studied in [12, Ex. 6.4] and [13]). If S is an associated (twisted) K3 surface of a cubic
fourfold X as above, it follows by Corollary 0.5 that hpSq is finite dimensional. It remains to
describe which K3 surfaces are associated.

Remark 2.19. There are also some sporadic examples of K3 surfaces (of even Picard rank)
with finite dimensional motives (cf. [45, Thm. 1, Thm. 2]). They come with a non-symplectic
group acting trivially on algebraic cycles and are always dominated by some Fermat surface Fn

([45, Thm. 5]). The geometry of Fermat varieties was studied by Shioda and Katsura [64]. It
follows from their results that hpFnq is of abelian type and one concludes using Proposition 2.11.

2.4. Moduli spaces of stable sheaves on K3 surfaces. Let S be a projective K3 surface,
v P H˚algpS,Zq primitive and H an ample line bundle on S which is generic with respect to v.
The moduli stack of H-Gieseker stable sheaves with Mukai vector v is known to admit a coarse
moduli space, which is a hyperkähler variety of dimension pvq2`2. See [35] for the general theory
of moduli spaces of sheaves. We will also consider moduli spaces Mσpvq, where σ P Stab:pSq is a
generic stability condition (in the sense of Bridgeland [15]) with respect to v, i.e. not contained
in a wall for the wall and chamber structure associated to v (cf. [16, Sec. 9]). Toda showed
that the moduli stack of σ-semistable objects in DbpSq with Mukai vector v (and fixed phase,
which we may asssume to be 1) is an Artin stack of finite type over C (cf. [65]). In general, it
admits a coarse moduli space, which is a normal projective irreducible variety with Q-factorial
singularities. In the Picard rank one case, it was observed by Minamide, Yanagida, and Yoshioka
(cf. [48]) that these moduli spaces are in fact isomorphic to moduli spaces of stable (twisted)
sheaves on some Fourier–Mukai partner of S. This technique was generalized in [8, Sec. 7] by
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Bayer and Macrì to arbitrary Picard rank. In particular, Mσpvq is a hyperkähler variety for v
primitive and σ generic and every semistable object is stable (non-emptiness is essentially due
to Kuleshov [38], Mukai [50], and Yoshioka, see e.g. [70] or [8, Cor. 6.9] in its final form). One
might wonder what the precise relation between the moduli spaces Mσpvq and Mτ pvq for two
generic stability conditions is. This was answered by Bayer and Macrì using a detailed analysis
of the various types of walls (cf. [7, Thm. 5.7]):

Theorem 2.20. Let S be a projective K3 surface, v primitive and σ, τ P Stab:pSq generic. Then
Mσpvq and Mτ pvq are birational hyperkähler varieties. 2

As a corollary of Theorem 2.14 we obtain:

Corollary 2.21. Let S be a projective K3 surface, v primitive and σ, τ P Stab:pSq generic
stability conditions. There is an isomorphism of motives

hpMσpvqq » hpMτ pvqq. 2

The following observation is an easy consequence:

Lemma 2.22. Let S be a projective K3 surface, v, w P H˚algpS,Zq primitive and σ a generic
stability condition with respect to v. Assume that w is isotropic with pv, wq “ ´r. Then there
exists a projective K3 surface S1 and a Brauer class α P BrpS1q such that the following holds:

(1) hpSq » hpS1q,
(2) hpMσpvqq is isomorphic to the motive of a moduli space of H 1-Gieseker stable α-twisted

sheaves of rank r on S1, where H 1 is some polarization for S1.

Proof. LetH be a generic polarization with respect to w and define S1 “MHpwq. Then S1 is a K3
surface by results of Mukai (cf. [50]) and there exists a derived equivalence Φ: DbpSq

„ //DbpS1, αq

where α P BrpS1q is the obstruction to the existence of a universal family as explained in [20,
Sec. 3.3]. It was recently observed by Huybrechts ([31, 34]) that derived equivalent (twisted)
K3 surfaces have isomorphic Chow motives. Moreover, Φ induces an isomorphism Mσpvq »

MΦpσqpΦpvqq. Note that Φpvq is a Mukai vector of rank r:

r “ ´pv, wq “ ´pΦpvq,Φpwqq “ ´pΦpvq, p0, 0, 1qq “ rkpΦpvqq.

Passing to the large volume limit for some generic polarization H 1 with respect to w (cf.
[16, Sec. 14]) we obtain a birational map which gives an isomorphism of Chow motives by
Corollary 2.21. 2

The above lemma allows one to reduce the rank of v in certain situations; in the case r “ 1

we can now compare the moduli space with a Hilbert scheme of length n subschemes. Denote by
βpnq the set of partitions of n. Here, a partition λ of n is a nonincreasing sequence of positive
integers pλ1, . . . , λlq that sum to n and we call l “ lpλq the length of λ. Note that lpλq “

řn
i“1 ai
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where ai “ #tλj | λj “ iu. We will use the shorthand Spλq “ Spa1q ˆ . . . ˆ Spanq. Recall that
the theory of (Chow) motives can easily be extended to quotients of smooth projective varieties
by finite groups as was shown in [23], so in particular to symmetric products Spkq.

Corollary 2.23. Let S be a projective K3 surface, v, w P H˚algpS,Zq be primitive and σ a generic
stability condition with respect to v. Assume that pvq2 ą ´2 and w is isotropic with pv, wq “ ´1.
Let dimMσpvq “ 2n. There is an isomorphism of motives:

hpMσpvqq » hpSrnsq »
à

λPβpnq

hpSpλqq b Ln´lpλq.

In particular, hpSq is finite dimensional if and only if hpMσpvqq is finite dimensional.

Proof. Let S1 and H 1 be as above. Then hpMσpvqq » hpMH 1puqq where u P H˚algpS
1,Zq has rank

one; thus MH 1puq is isomorphic to the Hilbert scheme S1rns. The motive of a Hilbert scheme of
a surface was computed by de Cataldo and Migliorini in [21], hence the formula above follows
from the isomorphism hpSq » hpS1q. Note that hpSkq » hpSk, symk, 0q ‘ hpSk, r∆s ´ symk, 0q

and hpSpkqq “ pSk, symk, 0q. This proves one direction of the second claim because products
resp. direct summands of finite dimensional motives are finite dimensional (Lemmata 2.12 and
2.13). The other direction follows similarly, since the summand for the partition λ “ pnq is
hpS b Ln´1q. 2

Remark 2.24. The corollary can also be deduced from the Torelli Theorem for hyperkähler
varieties. Indeed, the lattice theoretic condition ensures that Mσpvq is birational to the Hilbert
scheme S1rns of some K3 surface S1 (cf. [3, Prop. 5]). The birational map induces a Hodge
isometry rHpS,Zq » rHpS1,Zq and thus a derived equivalence DbpSq » DbpS1q by the derived
Global Torelli Theorem (cf. [30, Ch. 10]). It follows as above that hpMσpvqq » hpSrnsq.

Remark 2.25. Note that with the assumptions of the corollary, Mσpvq is in fact a fine moduli
space (cf. [30, Proposition 10.24]). Indeed, if w “ pr1, l1, s1q then h “ l1 ` pkrqA will be ample
for k " 0 and A any ample class. Then gcdpr, ph.lq, sq “ 1, which implies that the moduli space
is fine.

We now come to the proof of Theorem 0.1. Let S be a projective (twisted) K3 surface (or
an abelian surface). Assume that M is a smooth projective moduli space of stable (twisted)
sheaves on S. See Remark 2.26 for comments on the case of a moduli space of σ-stable objects.

Proof of Theorem 0.1. Let E be a quasi-universal sheaf on M ˆS and F its transpose on SˆM .
We use the following notation for the projections:

M ˆ S ˆM

M ˆ S M ˆM S ˆM

π12
π

π23
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and E “ π˚12pEq, F “ π˚23pF q for the pullbacks. Consider the relative Ext sheaves ExtiπpE ,Fq “
Ripπ˚ ˝HomqpE ,Fq and define

rExt!πs “
ÿ

p´1qirExtiπpE ,Fqs P KpM ˆMq.

Note that in our case only Ext1πpE ,Fq and Ext2πpE ,Fq are non-zero. A computation of the Chern
classes due to Markman ([47]) yields

cmp´rExt!πsq “ r∆M s P CHmpM ˆMq, (1)

where m is the dimension of M (Lemma 4 of loc. cit. also applies to moduli spaces of stable
twisted sheaves).

Consider the Chow groups CH˚pM ˆMqQ as a unital ring with convolution of cycles and
identity given by the diagonal. Define the following two-sided ideal generated by correspondences
which factor through some power of S:

I “ xβ ˝ α | α P CH˚pM ˆ SkqQ, β P CH˚pSk ˆMqQ, k ě 1y Ď CH˚pM ˆMqQ.

Note that I is closed under intersection products. Indeed, let α P CH˚pM ˆ SkqQ, β P

CH˚pSk ˆMqQ, α1 P CH˚pM ˆ Sk
1

qQ, β1 P CH˚pSk
1

ˆMqQ and denote by τ the involution of
M ˆM ˆM ˆM interchanging the middle two factors:

pβ ˝ αq ¨ pβ1 ˝ α1q “ r tΓ∆MˆM
s˚pβ ˝ αˆ β

1 ˝ α1q “ r tΓ∆MˆM
s˚ ˝ τ˚pβ ˆ β

1 ˝ αˆ α1q

“ r tΓτ˝∆MˆM
s˚pβ ˆ β

1 ˝ αˆ α1q “
`

r tΓ∆M
s ˆ r tΓ∆M

s
˘

˚
pβ ˆ β1 ˝ αˆ α1q

“
`

r tΓ∆M
s ˝ β ˆ β1

˘

˝
`

αˆ α1 ˝ rΓ∆M
s
˘

.

The last equality follows from Lieberman’s Lemma (cf. [52, Prop. 2.1.3]). We obtain a corre-
spondence which factors through Sk`k1 , so it is contained in I. We will conclude by showing
that the class of the diagonal is contained in I.

A Grothendieck–Riemann–Roch computation gives:

ch
´

´ rExt!πs
¯

“ ´ch
´

π!rRHompE ,Fqs
¯

“ ´π˚

´

chrRHompE ,Fqs ¨ π˚2 tdpSq
¯

“ ´π˚

´

π˚12chpE_q ¨ π˚23chpF q ¨ π˚2 tdpSq
¯

, (2)

where E_ denotes the derived dual of E and π2 is the projection to S. Let α “ ‘αi “

chpE_q ¨π˚2
a

tdpSq, β “ ‘βi “ chpF q ¨π˚2
a

tdpSq and n P N. Considering only the codimension
n part of (2) we find:

chn

´

´ rExt!πs
¯

“ ´
ÿ

i`j“n`2

π˚pπ
˚
12α

i ¨ π˚23β
jq P I.
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The codimension n part of the Chern character is given as a sum
p´1qn´1

pn´ 1q!
cn ` p, where p is

a polynomial in the Chern classes of degree less than n. Note that c1 “ ch1 is contained in I
and therefore also c2 “

1
2c

2
1 ´ ch2 P I. It follows iteratively that cn P I for all n and therefore

r∆M s P I by (1). Thus, there are cycles γi P CHeipM ˆ SkiqQ, δi P CHdipSki ˆMqQ, for some
ki P N, such that

r∆M s “
ÿ

δi ˝ γi P CHmpM ˆMqQ. (3)

Let δ “
À

δi viewed as a morphism of motives
À

hpSkiqpniq // hpMq with ni “ di ´ 2ki.
Equation (3) asserts that γ “

À

γi defines a right inverse for δ, i.e. the following composition is
the identity:

hpMq
À

hpSkiqpniq hpMq.
γ δ

Hence, hpMq is a direct summand of
À

hpSkiqpniq.
Moreover, we obtain a bound for the exponents ki. Consider the filtration Ik of I generated by

correspondences which factor through Sl with l ď k. With the above notation we have chn P I1

for all n and Ik ¨ Ik1 Ď Ik`k1 . Thus ki ď dimM for all i. 2

Remark 2.26. The above argument also works for moduli spaces Mσpvq of σ-stable objects
for a generic stability condition σ and primitive Mukai vector v. It was observed in [46] that
Markman’s computation of the Chern class can be carried out similarly in this case. Alternatively,
one can use the fact that any such moduli space is birational to a moduli space of Gieseker
stable sheaves and that birational hyperkähler varieties have isomorphic Chow motives.

Corollary 2.27. Let S and M be as above. If hpSq is finite dimensional, then hpMq is finite
dimensional as well. 2

Remark 2.28. We expect also that hpSq is motivated by hpMq (see the introduction). This
holds for example in the case of a Hilbert scheme, and more generally for M as in Corollary 2.23.
For fine moduli spaces it would follow from a conjecture of Addington [2]: A universal sheaf
induces a Fourier–Mukai transform F : DbpSq //DbpMq with right adjoint R. Addington
conjectured that the composition of F and R splits as follows:

R ˝ F » id‘ idr´2s ‘ . . .‘ idr´2n` 2s.

If v and w are the Mukai vectors of the Fourier–Mukai kernels, we obtain:

r∆Ss “
1

n
v ˝ w P CH2pS ˆ SqQ.

It follows as above that hpSq is a direct summand of
À

hpMqpniq for some ni P Z.

2.5. The Fano variety of lines. We provide a short proof of Corollary 0.5. Let X be a cubic
fourfold and F its Fano variety of lines. The Chow groups and motive of F were investigated in
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detail by Shen and Vial [63]. They studied Fourier transforms inducing a (particularly interesting)
decomposition of the Chow ring, similar to the case of an abelian variety. The relation between
the Chow groups of F and X given via the universal line (viewed as a correspondence) has been
elucidated as well. We refrain from going into the details and recommend loc. cit. for further
reading.

Proposition 2.29. Let X be a cubic fourfold and F its Fano variety of lines. Then the
transcendental motive tpXq is a direct summand of hpF qp´1q. In particular, the motive of X is
contained in MotpF q.

Proof. The universal line L P CH3pF ˆXq induces a morphism f of motives:

hpF qp´1q hpXq tpXq.L π4,tr
X

Let K be any finitely generated field extension of C. The only non-trivial rational Chow group
of tpXKq is CH3ptpXKqq » CH1pXKqhom,Q. Indeed, choose an embedding of K into the complex
numbers and denote by Y the base change of XK to C, which is a smooth complex cubic
fourfold. It is well known that the base change map CHiptpXKqq //CHiptpY qq induced by a
field extension is injective up to torsion (see e.g. [11, Lem. 1A.3]). Now use that CHiptpY qq

vanishes for i ‰ 3. The Chow group of one-cycles is universally generated by lines (cf. [62]) and
the assertion thus follows from Lemma 2.9. 2

3. Motives of special cubic fourfolds

In this section, we prove that there is an isomorphism of Chow motives tpSqp1q » tpXq, if
X P Cd is a special cubic fourfold with an associated twisted K3 surface pS, αq, i.e. d satisfies
(˚˚1). This generalizes work of Bolognesi, Pedrini [14], and Laterveer [43]. In [14], the authors
obtained such an isomorphism in the case when F pXq » Sr2s. Injectivity has been proven in [43]
for cubic fourfolds invariant under a certain involution. Both cases are instances of Theorem 0.3
(see the comments in Subsection 3.1). We start with a well known fact:

Lemma 3.1. Let S be a projective K3 surface and X a cubic fourfold. Then CH0pSqhom and
CH1pXqhom are divisible and torsion-free.

Proof. Divisibility of CH0pSqhom follows easily by constructing a curve through any two given
points and using the Jacobian of the normalization. The theorem of Rojtman [59] implies
that this group is torsion-free. Let F be the Fano variety of lines in X. It is a hyperkähler
variety, so its first Betti number vanishes and it follows as above that CH0pF qhom is divisible
and torsion-free. The universal line L induces a surjection

CH0pF qhom CH1pXqhom,
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hence the assertion follows from the divisibility of KerpL˚q which was proven by Shen and
Vial ([63, Thm. 20.5, Lem. 20.6]). 2

Proof of Theorem 0.3. Since C is a universal domain, it suffices to prove the isomorphism on
Chow groups. By a variant of Manin’s identity principle (cf. [27, Lem. 1], [66, Lem. 3.2] or [56,
Lem. 4.3]) this implies tpSqp1q » tpXq. The results of Addington–Thomas [1] and Huybrechts
[33] imply that there is an exact equivalence DbpSq » AX (resp. DbpS, αq » AX) if X P Cd is
generic and we consider this case first. Assume that α “ 1, i.e. d satisfies (˚˚). Consider the
composition Φ of an exact equivalence DbpSq » AX and the inclusion AX Ď DbpXq. By [53],
this functor is of Fourier–Mukai type, i.e. there is a complex E P DbpS ˆXq, such that for all
G P DbpSq:

ΦpGq » p˚pE b q˚pGqq,

where p and q are the projections. It follows that the left adjoint to Φ is of Fourier–Mukai type
as well, say with kernel F . Let v “ chpEq ¨

a

tdpS ˆXq (resp. w) be the Mukai vector of E (resp.
F). It is an algebraic cycle with Q-coefficients on S ˆX which needs not be of pure dimension.
Denote by vi (resp. wi) its codimension i part. Since Φ is fully faithful, the convolution w ˝ v is
rationally equivalent to the class of the diagonal r∆Ss on S ˆ S. More precisely, the following
equality holds in CH2pS ˆ SqQ:

r∆Ss “ w0 ˝ v6 ` w1 ˝ v5 ` w2 ˝ v4 ` w3 ˝ v3 ` w4 ˝ v2 ` w5 ˝ v1 ` w6 ˝ v0. (4)

Recall that the cohomologically trivial part of the Chow groups of S and X are concentrated
in codimension two resp. three. The induced action of v on Chow groups is compatible with the
action on cohomology. Thus, w3 ˝ v3 is the only summand on the right hand side of (4) acting
non-trivially on CH0pSqhom,Q, i.e. the following composition is the identity:

CH0pSqhom,Q CH1pXqhom,Q CH0pSqhom,Q.
v3˚ w3

˚

This proves injectivity of v3
˚. For the surjectivity consider the following diagram:

DbpSq AX DbpXq

KpSqQ KpAXqQ KpXqQ

CH˚pSqQ CH˚pXqQ

CH0pSqhom,Q CH1pXqhom,Q.

„

v

„

φ
v

v˚

v3˚
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Commutativity of the middle diagram follows from the Grothendieck–Riemann–Roch Theorem.
It suffices to show that the image of φ : KpAXqQ //CH˚pXqQ contains CH1pXqhom,Q. Indeed,
this would imply that any β P CH1pXqhom,Q lifts to some α P CH˚pSqQ such that v˚pαq “ β.
Since the action of v on cohomology is injective, α is homologically trivial, i.e. α P CH0pSqhom,Q.

Recall that by a result of Paranjape [55] (see also [61, Cor. 4.3]) CH1pXq is generated by lines.
Let i : ` Ď X be the inclusion of a line and consider the associated second syzygy sheaf F` of
I`p1q, defined by:

0 F` H0pX, I`p1qq bOX I`p1q 0.ev

Here, OXp1q is the induced polarization of X Ď P5 and ev is the evaluation map which is
surjective (cf. [39, Lem. 5.1]). A straightforward computation in loc. cit. shows that F` is
contained in AX . Next, we compute the Mukai vector of F`:

vpF`q “ vpO‘4
X q ´ vpI`p1qq “ vpO‘4

X q ´ vpOXp1qq ` vpO`p1qq.

Using the Grothendieck–Riemann–Roch Theorem one finds:

vpO`p1qq “ chpO`q ¨ chpOXp1qq ¨ tdpXq
1
2 “ i˚ptdp`qq ¨ chpOXp1qq ¨ tdpXq

´ 1
2

“ pr`s ` rptsq ¨ chpOXp1qq ¨ tdpXq
´ 1

2 ,

where rpts P CH0pXq » Z is the class of any closed point (X is rationally connected). The Todd
class of X is a polynomial in the class of a hyperplane section h “ c1pOXp1qq, in fact

tdpXq “ 1`
3

2
h`

5

4
h2 `

3

4
h3 `

1

3
h4.

Therefore, vpO`p1qq “ r`s `
5
4 rpts and

φprF`s ´ rF`1sq “ vpO‘4
X q ´ vpOXp1qq ` vpO`p1qq ´ pvpO‘4

X q ´ vpOXp1qq ` vpO`1p1qqq

“ vpO`p1qq ´ vpO`1p1qq “ r`s ´ r`
1s,

for each pair of lines ` and `1, which proves surjectivity of φ since CH1pXqhom,Q is generated by
cycles of this form.

So far, we proved that Z “ v3 induces an isomorphism CH0pSqhom,Q
„ //CH1pXqhom,Q. As

mentioned earlier, a variant of Manin’s identity principle gives that Z also induces an isomorphism
of motives tpSqp1q » tpXq, which extends to an isomorphism hpSqp1q » L‘hprpXq‘L3. Indeed,
the Picard rank ρ of S equals ρ2 ´ 1 with ρ2 “ dimH2,2pX,Qq. Thus, there are cycles W ,
W 1 P CH3pS ˆXqQ such that

tW 1 ˝W “ r∆Ss, W ˝ tW 1 “ π2
X ` π

pr
X ` π

4
X . (5)

This will be useful for the specialization argument below.
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Next, assume that d satisfies (˚˚1), i.e. DbpS, αq » AX . The composition with the inclusion is
again of Fourier–Mukai type (cf. [17]) and the formalism of Mukai vectors works in the twisted
case as well (see [36] for details). For E P CohpS ˆX,α´1 b 1q locally free and n “ ordpαq the
order of the Brauer class, Ebn is naturally an untwisted sheaf and one defines (cf. [34, Sec. 2.1]):

vpEq “ n
a

chpEbnq ¨
a

tdpS ˆXq.

The n-th root can be obtained formally, since rkpEq ‰ 0. Using a locally free resolution, this
definition extends to twisted coherent sheaves. Define the cycle Z as above. The proof now
works analogously, replacing DbpSq by DbpS, αq and KpSq by KpS, αq.

Finally, we prove the assertion for any X0 P Cd via specialization. Let T Ď Cd be a curve
passing through the point corresponding to X0 such that there are families of K3 surfaces (resp.
cubic fourfolds) S and X over T with an exact equivalence DbpSsq » AXs over a very general
point s P T and X0 » X0 for a closed point 0 P T (see [1]). Write S0 for the fibre of S over 0.

By a standard argument (see e.g. [60, Lem. 8]), the very general fibre of a smooth, proper
morphism of complex varieties specializes to the central fibre (the very general fibre is isomorphic
as an abstract variety to the geometric generic fibre since C is a universal domain). Applying
this to the families S ˆT X and S ˆT S we may assume that T is the spectrum of a complete
discrete valuation ring R » CJtK with generic point η and closed point 0. Write K “ Cpptqq for
its fraction field and K̄ for an algebraic closure of K.

Let W , W 1 P CH3pSη̄ ˆK̄ Xη̄q be as above, such that (5) holds. In fact, all cycles of (5) are
defined over a finite extension Cppt

1
n qq of K. Replacing R by CJt

1
n K, we may assume that the

cyclesW andW 1 are defined over K. Recall the specialization map for Chow groups (see [25, Ch.
10.1] for details), which is compatible with intersection product, pullback and proper pushforward.
We obtain cycles W0, W 1

0 P CH3pS0 ˆ X0qQ such that equalities of the form (5) hold. Thus,
W0 induces an isomorphism of motives hpS0qp1q » L ‘ hprpX0q ‘ L3. The action on Chow
groups restricts to an isomorphism of homologically trivial cycles CH0pSqhom,Q

„ //CH1pXqhom,Q

induced by π4,tr
X0
˝W0 ˝ π

2,tr
S0

. In fact, CH0pSqhom and CH1pXqhom are both divisible and torsion-
free (see Lemma 3.1), hence tensoring with Q is a bijection and we obtain an isomorphism of
integral Chow groups. 2

Corollary 3.2. Let X P Cd be a special cubic fourfold with d satisfying (˚˚1) and S an associated
(twisted) K3 surface. Then hpXq is finite dimensional if and only if hpSq is finite dimensional.
Assume moreover that dimH2,2pX,Zq ě 20. Then hpXq is finite dimensional.

Proof. The above theorem evidently implies hpXq » 1 ‘ hpSqp1q ‘ L2 ‘ L4 and we conclude
using Proposition 2.16. 2

3.1. Examples. We include a comparison with the work of Bolognesi, Pedrini [14] and review
some concrete geometric constructions producing the K3 surface.
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Example 3.3 (Cubic fourfolds containing a plane). Consider the divisor C8 Ď C. It corresponds
exactly to the cubic fourfolds X containing a plane (cf. [68, Sec. 3]). In this case, there is the
following standard construction: Let rX be the blow-up of X along a plane P . Projecting X from
P onto a disjoint plane in P5 yields a rational map which can be resolved to give a morphism
q : rX //P2. The fiber of q over a point x P P2 is the residual surface of the intersection xP XX.
Generically, it is a smooth quadric surface, i.e. isomorphic to P1 ˆ P1 and has two different
rulings. The discriminant divisor of q is a sextic curve in P2 over which each fibre is singular with
only one ruling. More precisely, let F p rX{P2q be the relative Fano variety of lines with universal
line L Ď F p rX{P2q ˆ rX. The Stein factorization of the projection L //P2 gives a diagram:

L rX X

S

P2,

q

where S //P2 is a double cover, branched along a sextic curve, which is smooth for a general
choice of X. Thus, S is a K3 surface. The projection L //S is a P1 bundle (a Brauer–Severi
variety) and induces a Brauer class α P BrpSq. Kuznetsov showed that there is an exact
equivalence DbpS, αq » AX (cf. [40, Thm. 4.3]). Note that d “ 8 indeed satisfies condition (˚˚1);
therefore tpSqp1q » tpXq by Theorem 0.3.

It is well known that rationality of the cubic fourfold X follows, if q has a rational section.
This holds true if there is an additional surface W Ď X such that degpW q ´ xP,W y is odd. In
this case, it was observed in [14, Sec. 8] that the isomorphism tpSqp1q » tpXq would follow from
finite dimensionality of hpSq.

Example 3.4 (Cubic fourfolds with an automorphism of order three). Let X be a cubic fourfold
given by an equation of the form

fpx0, x1, x2q ` gpx3, x4, x5q “ 0,

where f and g are homogeneous polynomials of degree three. Then X is invariant under the
automorphism σ of P5 given by

rx0 : x1 : x2 : x3 : x4 : x5s
� // rx0 : x1 : x2 : e

2πi
3 x3 : e

2πi
3 x4 : e

2πi
3 x5s.

Thus, there is an induced automorphism σF of the Fano variety F pXq, which is in fact symplectic,
i.e. σF |H2,0 “ id (see e.g. [24] for a classification of polarized symplectic automorphisms of F pXq).
Consider the cubic surfaces Z1 “ tfpx0, x1, x2q ´ s3 “ 0u and Z2 “ tgpx3, x4, x5q ´ t3u in P3
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with s resp. t as additional variables. The rational map

prx0 : x1 : x2 : ss, rx3 : x4 : x5 : tsq � // r
x0

s
:
x1

s
:
x2

s
:
x3

t
:
x4

t
:
x5

t
s

induces a degree three morphism Z1 ˆ Z2
: //X from the blow-up of Z1ˆZ2 along E1ˆE2, where

Ei is the cubic curve in Zi defined by the vanishing of s resp. t (see e.g. [19, Prop. 1.2]). Note
that finite dimensionality of hpXq follows from Proposition 2.11 and Lemma 2.13 since rational
surfaces have finite dimensional motives. Moreover, this morphism can be used to find two
disjoint planes P1 and P2 contained in X; if `i Ď Zi are lines (recall that Zi contains 27 of them)
the image of the product `1ˆ`2 is a plane in X and certain choices of lines produce disjoint planes
(cf. [19, Rem. 2.4]). There is a birational map from P1ˆP2 to X sending a pair of points px, yq to
the residual point of the intersection xyXX. The indeterminacy locus S Ď P1ˆP2 parametrizes
lines contained in X joining the two planes. It is a complete intersection of divisors of type
p1, 2q and p2, 1q, i.e. S is a K3 surface (see [26, Ex. 5.9]). Resolving the indeterminacy locus
gives an isomorphism BlSpP1 ˆ P2q

„ //BlP1YP2pXq which induces tpSqp1q » tpXq by comparing
homologically trivial cycles. In fact, the cubic fourfold X satisfies condition p˚˚˚q since the Fano
variety of X is birational to the Hilbert scheme Sr2s (see loc. cit.).

Example 3.5 (Cubic fourfolds with an involution). Consider the involution σ on P5 given by

rx0 : x1 : x2 : x3 : x4 : x5s
� // rx0 : x1 : x2 : x3 : ´x4 : ´x5s.

A cubic X invariant under σ is always of the form

tF px0, x1, x2, x3q ` x
2
4L1 ` x

2
5L2 ` x4x5L3 “ 0u,

where F is homogeneous of degree three and the Li are linear forms in x0, . . . , x3. Note that the
fixed locus of σ in P5 is the union of P3 “ tx4 “ x5 “ 0u and the line ` “ tr0 : 0 : 0 : 0 : x4 : x5su.
Thus, the fixed locus in X consists of a cubic surface W and the line `.

It was shown in [24] that σ induces a symplectic involution on the Fano variety F pXq.
Moreover, the fixed locus in F pXq can be described explicitly. It consists of the line `, the
27 lines contained in W and a K3 surface S. The surface S parametrizes lines contained in
X joining W and `. It is a double cover of the cubic W branched along the degree 6 curve
L2

3 ´ L1L2. This suggests that S is associated to X: The inclusion S Ď F pXq induces an
isomorphism H2,0pF pXqq » H2,0pSq and an isomorphism of transcendental lattices. Composing
with the incidence correspondence, we get T pSqp´1q » T pXq. It is not apparent that this is
an isometry. An isomorphism tpSqp1q » tpXq was nevertheless established by Bolognesi and
Pedrini (cf. [14, Sec. 5.2]) building on work of Laterveer [43].

Example 3.6 (Cyclic cubic fourfolds). Let fpx0, . . . , x4q be a homogeneous polynomial of degree
three, defining a smooth cubic threefold C Ď P4. A cyclic cubic fourfold is a triple cover X //P4
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ramified along C. It is a smooth cubic hypersurface X Ď P5 with an equation:

fpx0, . . . , x4q ` x
3
5 “ 0

and covering automorphism σ : X
„ //X given by:

rx0 : x1 : x2 : x3 : x4 : x5s
� // rx0 : x1 : x2 : x3 : x4 : e

2πi
3 x5s.

It was shown in [42] that the motive of a cyclic cubic fourfold X is finite dimensional. If
X satisfies condition (˚˚1) and S is an associated (twisted) K3 surface, then tpSqp1q » tpXq

and hpSq is finite dimensional as well. Unfortunately, it is not clear which K3 surfaces can
be associated to some X as above. Note that the family of cyclic cubic fourfolds contains
the Fermat cubic, so in particular it has non-trivial intersection with the divisor C8 of cubic
fourfolds containing a plane. However, there exists an example of a cyclic Pfaffian cubic fourfold
containing no plane (see [13, Prop. 5.1]).
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