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Abstract. We study the cycle-valued reduced Gromov–Witten
theory of a nonsingular projective K3 surface. For primitive curve
classes, we prove that the correspondence induced by the reduced
virtual fundamental class respects the tautological rings. Our proof
uses monodromy over the moduli space of K3 surfaces, degen-
eration formulae and virtual localization. As a consequence of
the monodromy argument, we verify an invariance property for
Gromov–Witten invariants of K3 surfaces in primitive curve class
conjectured by Oberdieck–Pandharipande.

0. Introduction

0.1. Gromov–Witten classes. Let M g,n(X, β) be the moduli space

of stable maps from connected genus g curves with n marked points to

a target variety X, representing the curve class β ∈ H2(X,Z).1 The

moduli space comes with natural projection and evaluation maps

M g,n(X, β)

M g,n Xn.

π ev

The action of the virtual fundamental class defines two series of cycles:

ZX
g,n,β(α) = ev∗

(
π∗α ∩ [M g,n(X, β)]vir

)
∈ H∗(Xn) , α ∈ H∗(M g,n) ,

and, considering the action in the opposite direction,

ΩX
g,n,β(v) = π∗

(
ev∗ v ∩ [M g,n(X, β)]vir

)
∈ H∗(M g,n) , v ∈ H∗(Xn) .

The latter are sometimes called Gromov–Witten classes. Classical

Gromov–Witten invariants are obtained by integrating against tauto-

logical classes on M g,n. Our goal here is to study these classes for a

nonsingular projective K3 surface S. Since ordinary Gromov–Witten

theory of a K3 surface vanishes for non-zero curve classses, we replace

Date: December 3, 2019.
1We will always assume β effective and 2g − 2 + n > 0.
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the virtual class by the reduced virtual class2

[M g,n(S, β)]red .

To locate the Gromov–Witten classes in cohomology, we consider the

tautological subrings [2]

R∗(M g,n) ⊂ H∗(M g,n) ,

spanned by push-forwards of products of ψ and κ classes on boundary

strata. On the K3 side, we consider the subrings [19]

R∗(Sn) ⊂ H∗(Sn)

generated by the diagonals and the pullbacks of β under the projection

maps.3

We prove that the reduced virtual class yields a correspondence be-

tween tautological rings.

Theorem 1. Let β ∈ H2(S,Z) be primitive and α ∈ R∗(M g,n), then

ZS
g,n,β(α) ∈ R∗(Sn) .

Theorem 2. Let β ∈ H2(S,Z) be primitive and v ∈ R∗(Sn), then

ΩS
g,n,β(v) ∈ R∗(M g,n) .

We expect both results to hold for arbitrary curve classes. A care-

ful study of the degeneration formula for the reduced virtual class is

necessary here. Also, the above correpondence is conjectured to hold

for algebraic cycles [18, Conj. 1 and 2]. Our arguments however do not

apply to Chow groups.

The system of Gromov–Witten classes satisfies certain compatibili-

ties captured by the notion of a Cohomological Field theory [8, 17]. Al-

though examples of non-tautological CohFT’s exist [16], it is not known

whether every CohFT that arises from the Gromov–Witten theory of

a variety X is in fact tautological.4

Let us point out that Theorem 2 was previously known for curves [2,

7] and varieties equipped with a strong torus action (with finitely many

0- and 1-dimensional orbits) [3]. Our proof uses these known cases.

2We refer to [9] for a modern treatment of the reduced obstruction theory.
3The dependence on β is suppressed in the notation. Also, we view β as a

cohomology class under the natural isomorphism H2(S,Z)
∼
= H2(S,Z).

4This question already appears in [2].
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0.2. Invariance property. As a consequence of Theorem 1 we verify

an invariance property for Gromov–Witten invariants of K3 surfaces

conjectured by Oberdieck–Pandharipande [14]. Let S and S̃ be two K3

surfaces, and let

ϕ :
(
H2(S,R) , 〈, 〉

)
→
(
H2(S̃,R) , 〈, 〉

)
be a real isometry sending an effective curve class β ∈ H2(S,Z) to an

effective curve class β̃ ∈ H2(S̃,Z),

ϕ(β) = β̃ .

We extend ϕ to H∗(S,R) by

ϕ(1) = 1 , ϕ(p) = p ,

where 1, p ∈ H∗(S,R) are the identity and the point class respectively.

Denote the (reduced) descendent Gromov–Witten invariants of S by〈
n∏
i=1

τai(wi)

〉S

g,β

=

∫
[Mg,n(S,β)]red

n∏
i=1

ψaii ∪ ev∗i (wi) , wi ∈ H∗(S,Q) .

Then the following invariance property holds:

Corollary 3. Let β ∈ H2(S,Z) and β̃ ∈ H2(S̃,Z) be primitive curve

classes, then 〈
n∏
i=1

τai(wi)

〉S

g,β

=

〈
n∏
i=1

τai(ϕ(wi))

〉S̃

g,β̃

.

The equality is expected to hold for all curve classes β and β̃ of the

same divisibility. The missing ingredient for imprimitive curve classes

is a degeneration formula for the reduced virtual class and a suitable

genus reduction.5 Once established, our proof may be extended to yield

the full invariance property.

Corollary 3 now fully justifies the formulation of the Multiple Cover

Conjecture for K3 surfaces [14, Conj. C2].

0.3. Outline. Section 1 contains a recollection of the key facts about

monodromy over the moduli space of K3 surfaces and Hodge groups.

We then explain how to use these facts to prove Theorem 1. The key

technical ingredient is Lemma 4. The proof of Theorem 2 is carried

out in the last part of the paper and is logically independent of the

5See the comment in the proof of Lemma 4.
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preceding sections. We use special degenerations for elliptically fibered

K3 surfaces [13]

S  R ∪E R

breaking the K3 surface into the union of two rational elliptic surfaces

intersecting along an elliptic curve. Our proof then proceeds by degen-

eration formulae and virtual localization to reduce to the case of an

elliptic curve.

0.4. Acknowledgements. This paper has greatly benefited from dis-

cussions with Georg Oberdieck, Rahul Pandharipande, Qizheng Yin.

Related discussions with Daniel Huybrechts, Andrey Soldatenkov about

moduli of K3 surfaces are gratefully acknowledged.

This project has received funding from the European Research Coun-

cil (ERC) under the European Unions Horizon 2020 research and in-

novation programme (grant agreement No 786580).

1. Monodromy

1.1. Non-positive case. Let S be a nonsingular projective K3 surface

and β ∈ H2(S,Z) a curve class. If β = 0, then

M g,n(S, 0) ∼= M g,n × S

and the virtual class is given by

[M g,n(S, 0)]vir =


[M0,n × S], g = 0

pr∗2 c2(S) ∩ [M1,n × S], g = 1

0, g ≥ 2.

Theorems 1 and 2 evidently hold true in this case. We will hence-

forth assume that β is a non-zero curve class. However, contracted

components will play a role for our vanishing result Lemma 4.

As explained in [18, Prop. 3], if

〈β, β〉 < −2

one can deform S such that β is not generically effective. The corre-

sponding moduli space is thus empty and Theorems 1 and 2 hold by

deformation invariance of the reduced virtual class.

An effective class β ∈ H2(S,Z) satisfying

〈β, β〉 = −2
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is always represented by a smooth rational curve C ⊂ S. Since C ∼= P1

is rigid, the evaluation maps evi factor through C, i.e.

M g,n(S, β)
ev→ C × . . .× C ⊂ S × . . .× S .

Note that in this case, restriction induces a surjection

R∗(Sn)→ H∗(C × . . .× C)

and therefore Theorem 1 holds.

1.2. Positive case. For 〈β, β〉 ≥ 0 we will use the ‘big monodromy’

over the moduli space of K3 surfaces. More precisely, given (S, β),

there exists a family of K3 surfaces with central fiber S

X → B

such that β is a (1, 1) class in each fiber and the image of the mon-

odromy representation

ρ : π1(B, 0)→ O(H2(S,Z))

is a finite index subgroup of the subgroup of O(H2(S,Z)) fixing β.

See [5, Sec. 6.4.3] for details. We write

T = 〈β〉⊥ ⊂ H2(S,C).

Since the monodromy group Im(ρ) is an arithmetic subgroup it is

Zariski dense in SO(T )6by Borel’s Theorem [1]:

Im(ρ) = SO(T ).

For clarity, let us comment on the relation between the monodromy

and the Hodge group for general S with

Pic(S) = Z · β

generated by an ample class β7. Since T is an irreducible lattice of K3

type, the endomorphism ring

K = EndQ(T )

associated to S is a field. For general (S, β), we have K = Q. The

computation by Zarhin [21] yields that the Hodge group of S is the

group of K-linear special isometries:

Hdg(S) = SOK(T ) ⊂ SO(T ) .

Thus, for general S the Hodge group is the full special orthogonal group

and equals the algebraic monodromy group.

6For 〈β, β〉 = 0 we consider {g ∈ SO(H2(S,C)) | g(β) = β} instead.
7Here and in Section 2 we consider the case 〈β, β〉 > 0 for simplicity.
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2. Invariant theory

2.1. Classical invariants. We explain how the monodromy is used to

prove Theorem 1. Let (S, β) be as above and write

H = H∗(S,C)

for the full cohomology. Consider the orthogonal decomposition

H = Halg ⊕ T,

where Halg is spanned by {1 , β , p} and

T = 〈β〉⊥ ⊂ H2(S,C).

We consider the action of the monodromy group SO(T ) on the full

cohomology H by acting trivially on the algebraic part Halg. Taking

products induces a monodromy action on H∗(Sn) for all n. We will

require a description of the monodromy invariant part

(H⊗n)SO(T ) .

The invariants are given by the trivial and the sign representations

of the orthogonal group:

(H⊗n)SO(T ) = (H⊗n)O(T ) ⊕ (H⊗n)O(T ),det,

where

(H⊗n)O(T ),det = {v ∈ H⊗n | ∀ϕ ∈ O(T ) : ϕ(v) = det(ϕ) · v}.

Since SO(T ) acts trivially on all powers H⊗kalg , it suffices to determine

the invariants of SO(T ) acting on T⊗n. The answer is classically known

[4, 20]. Let {γi} be a basis of T with intersection matrix (gij) and

inverse (gij). The intersection pairing on T corresponds to the class

Q =
∑

gijγi ⊗ γj ∈ T⊗2.

Consider the top wedge product of T represented by some non-zero

class Λ:

C · Λ = Λ21T ⊂ H⊗42 ,

which is clearly a sign representation for O(T ). Then the invariants

can be described as follows. The symmetric group Symn acts on T⊗n

by permutation and for v ∈ T⊗n we denote by

C · Symn(v)

the linear subspace generated by all translates of v. Then8

(T⊗n)SO(T ) = (T⊗n)O(T ) ⊕ (T⊗n)O(T ),det ,

8As above, the superscript ‘det’ indicates the sign representations.
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where

(T⊗n)O(T ) =

{
C · Symn(Q

n
2 ), n even

0, n odd

and

(T⊗n)O(T ),det =

{
C · Symn(Λ⊗Qn−21

2 ), n ≥ 21 odd

0, else.

Note that Q relates to the class of the diagonal of S via

∆ = Q+ 1⊗ p +
1

〈β, β〉
β ⊗ β + p⊗ 1.

We arrive at a description of (H⊗n)SO(T ). We have

(H⊗n)O(T ) = C · Symn(v1 ⊗ . . .⊗ vk ⊗∆
n−k
2 ),

where vi ∈ Halg and n− k even. Similarly, we find

(H⊗n)O(T ),det =

{
0, n < 21

C · Symn(Λ⊗ w), n ≥ 21

where w ∈ (H⊗(n−21))O(T ). We will denote the former by9

R∗(Sn) = (H⊗n)O(T ).

2.2. Vanishing. Let α ∈ R∗(M g,n) be a tautological class. We apply

the above monodromy argument to the class

π∗α ∩ [M g,n(S, β)]red

and find that

(1) ev∗
(
π∗α ∩ [M g,n(S, β)]red

)
= A+B ,

where

A ∈ R∗(Sn) , B ∈ (H⊗n)O(T ),det .

We will show that B = 0. Fix an orthonormal basis {γ1, . . . , γ21} of T

and let

γ = γ1 .

The class Λ (see Section 2.1) can then be described as

Λ =
∑

σ∈Symn

(−1)σσ(γ1 ⊗ . . .⊗ γ21) .

Since

〈Λ,Λ〉 6= 0

we can find B∨ ∈ (H⊗n)O(T ),det, such that

〈A,B∨〉 = 0, 〈B,B∨〉 = 1 ,

9This is the subring studied in [19].
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where 〈 , 〉 denotes the intersection pairing on Sn. We deduce Theo-

rem 1 from the following Lemma by pairing equation (1) against B∨.

For this, let vi ∈ H∗(S) such that 〈γ, vi〉 = 0 for all i. We will use a

bracket notation for Gromov–Witten invariants:〈
α; τ0(γ)k

∏
τ0(vi)

〉S
g,n,β

=

∫
[Mg,n(S,β)]red

π∗α ∪ ev∗1 γ . . . ev∗k γ
∏

ev∗i vi .

Lemma 4. Assume that β ∈ H2(S,Z) is primitive and k is odd. Then

we have the vanishing〈
α; τ0(γ)k

∏
τ0(vi)

〉S
g,n,β

= 0 .

Proof of Theorem 1. Let B∨ be as above. By the description of the

invariants in Section 2.1 we see that B∨ is a sum of (Symn translates

of) classes

Λ⊗ w ,
with w ∈ (H⊗(n−21))O(T ). The class Λ contributes one appearance of

γ for each summand. By the description of (H⊗m)O(T ), each generator

contributes an even number of γ’s coming from the diagonal classes.

Thus, B∨ is a sum of classes each of which has on odd number of γ’s �

Proof of Lemma 4. The proof follows the induction in [13, Sec. 7] (see

also [15, Sec. 3]). We use the lexicographic order on (g, n). A key

ingredient is the strong form of Getzler–Ionel vanishing proved in [2].

Recall that for a stable graph Γ and the corresponding boundary map

ι : MΓ →M g,n

we have the following splitting behavior for the reduced class. The

pullback

ι![M g,n(S, β)]red

decomposes as a sum of Gysin pullbacks of products of virtual classes.

Exactly one vertex attains a reduced virtual class and all other vertices

attain the usual virtual class. Since the virtual class is non-trivial only

for β = 0 and g ∈ {0, 1}, very few stable graphs Γ contribute to the

splitting formula. Also, recall that in this case

M g,n(S, 0) ∼= M g,n × S

and the virtual class is given by

[M g,n(S, 0)]vir =


[M0,n × S], g = 0

pr∗2 c2(S) ∩ [M1,n × S], g = 1

0, g ≥ 2 .
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We start with the case of genus zero invariants:

Base. Let (g, n, β) = (0, n, 0) and consider the non-reduced invariant∫
[M0,n(S,0)]vir

π∗α ∪ ev∗1 γ . . . ev∗k γ
∏

ev∗i vi = deg(α) ·
∫
S

γk
∏

vi .

The integral vanishes since k is odd.

For g = 0, α ∈ R0(M g,n) and β 6= 0 we use the divisor equation.

The corresponding reduced invariant vanishes since 〈β, γ〉 = 0.

Induction. We distinguish two cases depending on the codimension

of α ∈ RH∗(M g,n). If no point insertion appears, i.e. vi ∈ H≤2(S) for

all i, then α ∈ RH≥g(M g,n) and α is supported on the boundary

∂M g,n ⊂M g,n .

There are only three types of boundary stata with possibly non-zero

contributions.

Boundary 1. Consider the boundary map gluing the last two mark-

ings

ι : M g−1,n+2 →M g,n .

If α = ι∗α
′, then〈

α; τ0(γ)k
∏

τ0(vi)
〉S
g,n,β

=
〈
α′; τ0(γ)k

∏
τ0(vi)τ0(∆)

〉S
g−1,n+2,β

= 0

by induction. Indeed, the diagonal class contributes two insertions of

γ, i.e. the number of γ insertions is again odd.

Boundary 2. Let ` ≥ 1 and k = k1 + . . .+ k`. Consider the boundary

map

ι : M g−`,n−k+` ×M1,k1+1 × . . .×M1,k`+1 →M g,n ,

where the markings specified by Ij ⊂ {1, . . . , n} lie on the j-th genus

1 component. Let I = I1 ∪ . . . ∪ I`. Note that each gluing induces an

appearance of the diagonal class ∆. Recall the formula for the diagonal

∆ = 1⊗ p +
1

β2
β ⊗ β +

∑
γi ⊗ γi + p⊗ 1 .

Only the last summand produces possibly non-zero invariants at the

genus 1 vertices. Thus, if α = ι∗(α
′ × α1 × . . .× α`) then〈

α; τ0(γ)k
∏

τ0(vi)
〉S
g,n,β

=

〈
α′; τ0(γ)k

∏
i/∈I

τ0(vi)τ0(p)`

〉S

g−`,n−k+`,β

·
∏̀
j=1

(
degαj ·

∫
S

c2(S)vIj

)
.
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The integral
∫
S
c2(S)vIj is non-zero only if all the insertions specified

by Ij are multiples of 1 ∈ H∗(S). Thus, all markings with γ insertions

lie on the non-contracted component and we can apply induction to

find 〈
α; τ0(γ)k

∏
τ0(vi)

〉S
g,n,β

= 0 .

Boundary 3. Consider the case of a genus g component with ` con-

tracted bubbles attached, i.e.

ι : M g,n−k+` ×M0,k1+1 × . . .×M0,k`+1 →M g,n .

We use the same notation as in the previous case. This time, the

invariants at the genus 0 vertices are of the form

degαi ·
∫
S

δvIj .

Here, δ is part of the basis {1, β, γ1, . . . , γ21, p} of H∗(S) and comes

from the appearance of the diagonal class at the gluing points. If Ij
does not contain any marking carrying a γ insertion, the integral is non-

zero only for δ 6= γ and we can apply induction (lower n). However, if

Ij contains a marking carrying a γ insertion, there are two cases.

(1) If Ij contains no other such marking, then the integral is non-

zero only for δ = γ in which case we obtain a new appearance

of γ at the genus g vertex. The number of γ’s at the genus g

vertex remains unchanged.

(2) If Ij contains more than one such marking, then it contains

exactly two and the integral is non-zero only for δ = 1. In this

case, the number of γ’s at the genus g vertex is reduced by two

and therefore stays odd.

In each case the number of markings at the genus g vertex decreases

and we can apply induction.

Finally, to deal with point insertions we work with an elliptic K3

surface S with a section and use degeneration to the normal cone of an

elliptic fiber E, i.e.

S  S ∪E E × P1

For this, we recall the relation between absolute invariants of S and

relative invariants of (S,E).

Upper triangularity. Consider an elliptic K3 surface S with a sec-

tion. Degeneration to the normal cone of an elliptic fiber E shows

that the Gromov–Witten invariants of the relative geometry (S,E) are
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determined by the absolute invariants. More precisely, the degenera-

tion formula yields an upper triangular relation (see [13, Lem. 31], [15,

Prop. 4]).

Point insertions. We consider the case of point insertions. This

time, we can not apply Getzler–Ionel vanishing. Instead, we use the

degeneration

S  S ∪E E × P1 .

and specialize the point to lie on the bubble E × P1. The degenera-

tion formula for the reduced class [10, 11, 13] then removes the point

insertion from 〈
α; τ0(γ)k

∏
τ0(vi)τ0(p)

〉S
g,n,β

.

In fact, if g = g′+g′′ is a splitting of the genus, then the corresponding

summands in the degeneration formula are non-zero only for g′′ ≥ 1,

since the relative geometry E × P1/E carries a relative and a non-

relative point insertion. Thus, the genus g′ drops10 and we conclude the

proof using the upper triangular relation between relative and absolute

invariants. �

We deduce the invariance property from Theorem 1.

Proof of Corollary 3. Let

ϕ :
(
H2(S,R) , 〈, 〉

)
→
(
H2(S̃,R), 〈, 〉

)
be a real isometry with

ϕ(β) = β̃ .

After extending ϕ to

ϕ : H∗(Sn)→ H∗(S̃n)

we see that ϕ respects the subrings R∗(Sn) resp. R∗(S̃n). Applying

Theorem 1 we have

ϕ ev∗

(∏
ψai ∩ [M g,n(S, β)]red

)
= ev∗

(∏
ψai ∩ ev∗[M g,n(S̃, β̃)]red

)
.

We conclude by integrating against the insertions wi and using once

again that ϕ is an isometry. �

10We crucially use primitivity of β at this point. A proposal for a degeneration
formula in the imprimitive case has been made in [13, Sec. 4.6]. However, the genus
reduction for imprimitive curve classes will be more subtle.
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3. Classical techniques

This section contains a proof of Theorem 2. We use degeneration

formulae and virtual localization. The Gromov–Witten classes for rela-

tive geometries are defined analogously to the absolute case. For stable

maps to rubber [12] the corresponding GW classes are indicated by a

tilde.

Let S be a nonsingular projective K3 surface, β ∈ H2(S,Z) effective

with 〈β, β〉 = 2h− 2 ≥ 0 and v ∈ R∗(Sn). By standard arguments we

may choose S to be an elliptic K3 surface with a section.

We prove Theorem 2 in the following five steps:

(1) Degenerate S to a broken geometry

S  R ∪E R→ P1 ∪ P1 ,

withR ∼= Bl9(P2) a rational elliptic surface and E ⊂ R a smooth

elliptic fiber. Since β and all diagonals of Sn lift to the family,

we can apply the degeneration formula to v ∈ R∗(Sn). We are

reduced to proving that the classes Ω
R/E
g,n,β(v|1) of the pair (R,E)

are tautological.

(2) Degeneration to the normal cone

R R ∪E E × P1

reduces to R and the pair (E × P1, E). Since R can be de-

formed to a toric blow-up, the GW classes are tautological by

virtual localization. It remains to consider classes of the form

Ω
E×P1/E
g,n,β (v|η) with η ∈ H∗(E).

(3) Virtual localization for the pair (E × P1, E) reduces to E and

rubber GW classes.

(4) The rubber case involves Ψ-classes defined by the cotangent line

at the relative divisor. Topological recursion relation removes

the Ψ-classes.

(5) The rubber GW classes are tautological by the recent work on

DR cycles for target varieties and the elliptic curve case.

Proof of Theorem 2. Consider an elliptic K3 surface S → P1 with a

section. Denote the class of the section and the class of a fiber by B

resp. F and let

βh = B + hF ∈ H2(S,Z).
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We will use the analogous notation for any of the surfaces S, R and

E × P1.

We treat the non-positive case 〈β, β〉 = −2 first. Then, the (cycle-

valued) Gromov–Witten theory is determined by the normal bundle

NB/S ∼= OP1(−2). By virtual localization [3] all Gromov–Witten classes

are tautological. From now on assume h ≥ 1.

Step 1. Our starting point is a degeneration of S to an elliptically

fibered surface R∪ER (see [13, Sec. 2.2, 2.3]), where R ∼= Bl9(P2)→ P1

is the blow-up of a general elliptic pencil.

S

E

C

R

R

Figure 1. A degeneration of K3 surfaces, see [13, Fig-
ure 1].

Degeneration formula [13] for the reduced virtual class of S expresses

GW classes of S in terms of classes of the pair (R,E) with relative in-

sertion 1 ∈ H∗(E). More precisely, let M g,n(R/E, β) be a moduli space

of stable relative maps to expanded degenerations of (R,E) with mul-

tiplicity 1 along the divisor E and define the Gromov–Witten classes

of (R,E) using this moduli space. Let

ι : M g′,n′+1 ×M g′′,n′′+1 →M g,n

be a gluing map. We have11

ΩS
g,n,βh

(v) =
∑

ι∗

(
Ω
R/E
g′,n′,βh′

(vI |1)× Ω
R/E
g′′,n′′,βh′′

(vJ |1)
)
,

where the sum is over all

I t J = {1, . . . , n} , g′ + g′′ = g , h′ + h′′ = h .

11Recall that we use the reduced virtual class for S. Also, we use the same
notation ι for all gluing maps.
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Step 2. Consider the degeneration to the normal cone of E ⊂ R

R R ∪E (E × P1).

Since B is rigid in R, the evaluation map

M g,n(R/E, β)→ E

is constant. We fix a self-dual basis {η} of H∗(E) given by {1, a, b, p}.
The degeneration formula yields:

ΩR
g,n,β(v) = Ω

R/E
g,n,β(v|1)× Ω

E×P1/E
0,0,B (∅|p) + . . . .

By ‘. . .’ we mean products of GW classes involving Ω
R/E
g′,n′,β′(v

′|1) with

(1) g′ < g or

(2) g′ = g and n′ < n or

(3) g′ = g and n′ = n and β − β′ 6= 0 is effective.

We are thus reduced to the case of GW classes of R and (E × P1, E).

Note that R is deformation equivalent to a toric surface. Indeed, R is

isomorphic to the blow-up Bl9(P2) of P2 in the base locus of a general

elliptic pencil, i.e. in 9 points. Thus, R can be viewed as a blow-

up Blp(R
′) and by induction we may assume that R′ is deformation

equivalent to a toric surface. Moving the point p to a fixed point

of the torus action deforms Blp(R
′) to a toric blow-up of R′. Virtual

localization and deformation invariance of the virtual fundamental class

imply that all GW classes of R are tautological (see [3, p. 20]).

Step 3. Consider the C∗-action on E × P1 defined by the fiberwise

action on P1 with weights (−1, 0). Let p0 = [1 : 0] and p∞ = [0 : 1]

be the fixed points. The induced action on the tangent spaces Tp0 and

Tp∞ has weight 1 resp. −1. We denote the equivariant parameter by t.

We use virtual localization to prove that the GW classes of the pair

(E × P1, E0) are tautological.

We first describe the fixed loci of the induced C∗-action on

M g,n(E × P1/E0, β) ,

the moduli space of stable maps to expanded degenerations of (E ×
P1, E0) with mulitplicity 1 along the relative divisor. The domain of a

C∗-fixed stable map is a gluing

C = C ′ ∪ Ce ∪ C ′′
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of a unique rational compononent Ce mapping isomorphically to B,

with various curves attached over p0 resp. p∞:

• C ′ defines a stable map to rubber,12

• C ′′ defines a stable map to E∞.

We let x∞ ∈ C ′ and x0 ∈ C ′′ be the gluing points. Fixing splitting

data

Γ = (g′, h′, I)

with 0 ≤ g′ ≤ g, 0 ≤ h′ ≤ h, I ⊂ {1, . . . , n} corresponds uniquely to

the fixed locus MΓ of stable maps with:

• g(C ′) = g′,

• f∗([C ′]) = B + h′F ,

• the markings specified by I ⊂ {1, . . . , n} lie on C ′.

Following [3] we use the standard tangent-obstruction sequence to

compute the moving part of the obstruction bundle. We let E∨ be the

dual of the Hodge bundle associated to C ′′ and denote by

cz(F ) = 1 + zc1(F ) + . . .+ zrcr(F )

the Chern polynomial of a bundle F of rank r. Also, let ψ∞ be the

cotangent line class at the relative marking x∞ and ψ0 the cotangent

line class at x0. Then

1

e(N vir
Γ )

=
(−t)g′′−1c−1/t(E∨)
(t− ψ∞)(−t− ψ0)

,

Let v1, . . . , vn ∈ H∗(E × P1), δ ∈ H∗(E) and set v =
∏

ev∗i (vi). We

denote the insertions specified by the splitting

{1, . . . , n} = I t J

by vI and vJ respectively. We choose equivariant lifts δ̃ of δ and ṽI of

(vI)|E0 and let ξ(Γ) be the usual combinatorial factor. Then

Ω
E×P1/E
g,n,β (v|δ) =

∑
Γ

ξ(Γ)

e(N vir
Γ )

ι∗

(∑
η

ΩE×P1∼
g1,n1,βh1

(δ̃|ṽI |η)

× ΩE
g2,n2+1,h2

(η∨(vJ)|E∞)
)
.

Step 4. Consider a moduli space of stable maps to rubber

M
∼

= M g,n(E × P1/(E0 ∪ E∞), β)∼.

12See e.g. [12, Sec. 1.5] for details about rubber targets.
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Note that the expression in Step 3 involves powers of the class

ψ∞ ∈ H2(M
∼
,Z) .

We describe briefly how to remove them (cf. [12, Sec. 1.5]). Let [f ] be

a moduli point and assume that the domain of f carries at least one

non-relative marked point q. LetM0,3 be the stack of genus 0 prestable

curves with three marked points. Consider the map

M
∼ →M0,3

[f ] 7→ pr−1 pr(q) ,

where pr is the projection from expanded degenerations to E × P1.

The contangent line class at the relative divisor ψ∞ is the pull-back

of the cotangent line class at the third marking. Topological recursion

relation yields

ΩE×P1∼
g,n,β (δ̃|ṽψk∞|η) =

∑
ζ(ν)ι∗

(
ΩE×P1∼
g′,n′,β′ (δ̃|ṽ′|ν)

× ΩE×P1∼
g′′,n′′,β′′(ν

∨|ṽ′′ψk−1
∞ |η)

)
,

where ζ(ν) is a combinatorial factor. We thus remove all powers of

ψ∞-classes recursively. If the domain of f does not carry a non-relative

marking, we use the dilaton equation to add a marking q:

ΩE×P1∼
g,n,β (δ̃|ṽψk∞|η) =

1

2g + n
ΩE×P1∼
g,n+1,β(δ̃|ṽψqψk∞|η) .

Step 5. Consider a rubber Gromov–Witten class ΩE×P1∼
g,n,β (δ̃|ṽ|η) with-

out ψ∞-classes. Let

ε : M
∼ →M g,n+2(E, h)

be the natural forgetful morphism. We have

ΩE×P1∼
g,n,β (δ̃|ṽ|η) = π∗

(
ev∗(δ̃ṽη) ∩ ε∗[M

∼
]vir
)

The push-forward ε∗[M
∼

]vir of the virtual class is the E-valued double

ramification cycle [6]; it is a tautological class on M g,n+2(E, h). The

Gromov–Witten classes of E are tautological by [7] and the proof is

complete. �
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ETH Zürich, Department of Mathematics

E-mail address: buelles@math.ethz.ch


	0. Introduction
	0.1. Gromov–Witten classes
	0.2. Invariance property
	0.3. Outline
	0.4. Acknowledgements

	1. Monodromy
	1.1. Non-positive case
	1.2. Positive case

	2. Invariant theory
	2.1. Classical invariants
	2.2. Vanishing

	3. Classical techniques
	References

