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CURVES ON K3 SURFACES IN DIVISIBILITY TWO

T

YOUNGHAN BAE AND TIM-HENRIK BUELLES

ABSTRACT. We prove a conjecture of Maulik, Pandharipande, and
Thomas expressing the Gromov—Witten invariants of K3 surfaces
for divisibility two curve classes in all genus in terms of weakly
holomorphic quasimodular forms of level two. Then, we establish
the holomorphic anomaly equation in divisibility two in all genus.
Our approach involves a refined boundary induction, relying on
the top tautological group of the moduli space of smooth curves,
together with a degeneration formula for the reduced virtual fun-
damental class with imprimitive curve classes. We use the double
ramification relations with target variety as a new tool to prove
the initial condition. The relationship between the holomorphic
anomaly equation for higher divisibility and the conjectural multi-
ple cover formula of Oberdieck and Pandharipande is discussed in
detail and illustrated with several examples.

CONTENTS

Introduction

Quasimodular forms and Hecke operators
Multiple cover formula

Holomorphic anomaly equation

Relative holomorphic anomaly equation
Tautological relations and initial condition
Proof of Theorem 1 and 3

Examples

Appendix A. A proof of degeneration formula

References

Date: January 19, 2021.

15
21
26
32
41
43
44
46


http://arxiv.org/abs/2006.00862v2

2 YOUNGHAN BAE AND TIM-HENRIK BUELLES

0. INTRODUCTION

Let S be a complex nonsingular projective K3 surface and § €
H,(S,Z) an effective curve class. Gromov-Witten invariants of S are
defined via intersection theory on the moduli space M, (S, ) of stable
maps from n-pointed genus ¢ curves to S. This moduli space comes
with a virtual fundamental class. However, the virtual class vanishes
for 3 # 0 so, instead, we use the reduced class®

[Mg,n(sa B)]md € Ag-i-n (Mgm(sa B)? Q) :

For integers a; > 0 and cohomology classes 7; € H*(S,Q) we define

5 CE
() 7o, ()= [ Y Ui (o)
9 T a(s e 11
where ev;: M, (S, 3) — S is the evaluation at i-th marking and 1; is
the cotangent class at the i-th marking. By the deformation invariance
of the reduced class, the invariant only depends on the norm (£, #) and
the divisibility of the curve class 5.

0.1. Quasimodularity. Gromov-Witten invariants of K3 surfaces for
primitive curve classes are well-understood since the seminal paper by
Maulik, Pandharipande, and Thomas [29]. The invariants are coeffi-
cients of weakly holomorphic? quasimodular forms with pole of order
at most one [29, Theorem 4]. For imprimitive curve classes, the quasi-
modularity is conjectured with the level structure [29, Section 7.5].

The quasimodularity can be stated in a precise sense via elliptic K3
surfaces. Let

78— P!

be an elliptic K3 surface with a section and denote by B, F' € Hy(S,Z)
the class of the section resp. a fiber. For any m > 1 one defines the
descendent potential

Fgm (Ta1 (71) -+ Tan (/Vn)) = Z <Ta1 (71) -+ - Ta, (/Vn)>jm3+hp qh_m .
h>0

Note that this generating series involves curve classes mB + hF' of
different divisibilities, bounded by m.

IWe will identify this class with its image under the cycle class map A, — Ha,.
2Weakly holomorphic means holomorphic on the upper half plane with possible
pole at the cusp ico.
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It is convenient to use the following homogenized insertions which
will lead to quasimodular forms of pure weight. Let 1 € H°(S) and
p € H*(S) be the identity resp. the point class. Denote

W =B+ F € H*S)

and let
U=Q(FW)c H*S)

be the hyperbolic plane in H%(S) and let U+ C H?(S) be its orthogonal
complement with respect to the intersection form. We only consider
second cohomology classes which are pure with respect to the decom-
position

H*(S,Q) = Q(F)e QW) U*.
Following [8, Section 4.6], define a modified degree function deg by

2 ify=Worp,
deg(y) =q 1 ifyeU",
0 ify=Forl.

For m > 1, consider the Hecke congruence subgroup of level m

To(m) = {(‘C‘ Z) € SLa(Z) =0 mod m}

and let QMod(m) be the space of quasimodular forms for the congru-
ence subgroup ['g(m) C SLs(Z). Let A(q) be the modular discriminant
Alg) =q ] -gH™.
n>1
Our first main result proves level two quasimodularity of F,, previ-

ously conjectured by Maulik, Pandharipande, and Thomas [29, Section
7.5].

Theorem 1. Let vy,...,7v, € H*(S) be homogeneous on the modified
degree function deg. Then F 5 is the Fourier expansion of a quasimod-
ular form

Fo2(Tar(01) - Tan () € @QMod(Q)

of weight 29 — 12 + . deg(;) with pole at ¢ = 0 of order at most 2.

0.2. Holomorphic anomaly equation. In the physics literature, the
(conjectural) holomorphic anomaly equation [4, 5] predicts hidden struc-
tures of the Gromov—Witten partition function associated to Calabi-
Yau varieties. For the past few years, there has been an extensive
work to prove the holomorphic anomaly equation in many cases: local
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P? [26], the quintic threefold [11, 16], K3 surface with primitive curve
classes [33], elliptic fibration [34] and P? relative to a smooth cubic [6].

Every quasimodular form for T'g(m) can be written uniquely as a
polynomial in Cy with coefficients which are modular forms for I'y(m)
[18, Proposition 1]. Here,

1

Cy(q) = —ﬂEz(Q)

is the renormalized second Eisenstein series. Assuming quasimodu-
larity, the holomorphic anomaly equation fixes the non-holomorphic
parameter of the Gromov-Witten partition function of K3 surfaces in
terms of lower weight partition functions: it computes the derivative
of F,,,, with respect to the Cy variable. See [33] for the proof of holo-
morphic anomaly equation for K3 surfaces with primitive curve classes
and [34] for the holomorphic anomaly equation associated to elliptic
fibrations.

Define an endomorphism [33, Section 0.6]
o: H*(S?*) — H*(S?)
by the following assignments:

o(y®y) =0
if v or v/ € H'(S) @ Q(F) ® H*(S), and for o,/ € U™+,
c(WHRW)=Apy, c(WRa)=—-aK F,
oc(a®W)=-FKa, o(la,d) = {a, o) FKX F,
where Ay 1 denotes the diagonal class for the intersection pairing on U~.

We will view ¢ as the exterior product o; X o, via Kiinneth decompo-
sition.

Recall the virtual fundamental class for trivial curve classes which
will play a role for the holomorphic anomaly equation. For g = 0 we
have an isomorphism

M, (8,002 M,, xS
and the virtual class is given by

(Mo, x S] if g=0,
[My,(S,0)]"" = { e2(S) N [My1, x S| if g =1,
0 if g>2.
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Also, consider the pullback under the morphism 7: S — P! of the
diagonal class of P!

2
Ap =1RF+FR1=>Y 6K,
=1

Define the generating series®

(1) Hgm(O‘;"Ylw--/Yn)

=Fgoim (a; Vi ooy Vs A]pl)
+ 2 Z Foi.m (04113 Y1y s 5z‘) FZ? (0412; Vizs 5Zv)
9=g1+g2

{1,...,n}=[1u12
1€{1,2}

- 22 Fg,m(a%'; Vs oo Yiels T TYis Vit ds - - - » %)
i=1

n

20

+ E;(%,F)Fg,m(a;%,...,7,~_1,F,%+1,...,7n)
2

B _ZFQ’m(a;/yl"'"Ul(j/i’/Yj)v"'70-2(71'7’7@)7---7771)7
m i<j — ——

ith jth

where FU" denotes the generating series for virtual fundamental class.
In most cases this term vanishes. The equation takes almost the same
form for arbitrary m, only the last two terms acquire a factor of %
The appearance of these factors is explained in Section 3, see also
Example 22. We conjecture that the holomorphic anomaly equation
has the following form:

Conjecture 2.

d
(2) d—CQngm(oz;%, .. .,yn) = Hgvm(a;yl, . ,yn) )

For primitive curve classes, the holomorphic anomaly equation is
proven in [33]. In higher divisiblity, it is precisely equation (2) that
would be implied by the conjectural multiple cover formula for im-
primitve Gromow—Witten invariants of K3 surfaces. We explain this
in the following section. We prove Conjecture 2 unconditionally when
m=2:

3Here, instead of descendent insertions we use a tautological class a € R* (Mgy.,),
see the comment in Section 2.2
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Theorem 3. For any g > 0,
d
(3) d—CZFg,z(oz;%, o) = Hga (v, 7)) -

0.3. Multiple cover formula. Motivated by the Katz—Klemm—Vafa
(KKV) formula, Oberdieck and Pandharipande conjectured a formula
which computes imprimitive invariants from the primitive invariants:

Conjecture 4. ([32, Conjecture C2]) For a primitive curve class (3,

(4) <Ta1 ('71) - Tap, (’Vn)>g7m5

_ Z d2973+deg<7_a1(<pd’m(fyl)) . .Tan(wd,m(%)»g,@d,m(%ﬁ) ’
dlm

The invariants on the right hand side are with respect to primitive
curve classes?. Assuming this formula, we can deduce the holomorphic
anomaly equation:

Proposition 5. Let m > 1. Assume the multiple cover formula (4)
holds for all curve classes of divisibility d | m and all descendent inser-
tions. Then the holomorphic anomaly equation (2) holds.

Given this proposition, it seems a natural strategy to prove the mul-
tiple cover formula in divisibility two and deduce, as a consequence,
the holomorphic anomaly equation. Indeed, our method does follow
this logic for m = 2 and for low genus: we verify the multiple cover
formula for g < 2, see Example 35. For higher genus, however, our
method does not seem suitable to achieve this. Instead, our proof of
Theorem 1 provides an algorithm, based on the degeneration to the
normal cone of a smooth elliptic fiber £ C S, to reduce divisibility
two invariants to low genus invariants for which the multiple cover for-
mula is known®. The degeneration formula intertwines invariants of S
with invariants of P! x F in a non-trivial way. This phenomenon is
illustrated in Example 35 for the genus 2 invariants

<7_0(p)2>2,25 :

4Section 2 contains all relevant definitions.

5The genus 0 and genus 1 cases are proved by Lee and Leung in [24, 25]. Their
proof involves a degeneration formula in symplectic geometry which is not possible
in algebraic geometry. We present an algebro-geometric approach using the KKV
formula.
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0.4. Hecke operator. In Section 2 we apply Conjecture 4 to an ellip-
tic K3 surface to deduce a conjectural multiple cover formula for the
descendent potentials Fg,,. The multiple cover formula for any divis-
ibility m is then simply a Hecke operator of the wrong weight acting
on the primitive potential F, ;. Indeed, the weight of F,; (and conjec-
turally of Fy,,) is 29 — 12 + deg, whereas the Hecke operator has the
weight of a descendent potential attached to elliptic curves, namely
2g — 2 + deg. This operator can be expressed in terms of Hecke op-
erators (of the correct weight) and translation ¢ — ¢?. Together with
the holomorphic anomaly equation for primitive curve classes [33] this
naturally leads to the above conjecture for the holomorphic anomaly
equation for higher divisibility.

0.5. Plan of the paper. We prove the quasimodularity and the holo-
morphic anomaly equation by induction on the genus and the number
of markings. In Section 1, we discuss Hecke theory for weakly holomor-
phic quasimodular forms. This leads to a natural formulation of the
multiple cover formula in Section 2 and the imprimitive holomorphic
anomaly equation in Section 3. In Section 4, compatibility of the holo-
morphic anomaly equation with the degeneration formula is presented.
In Section 5, we derive the multiple cover formula, which implies the
holomorphic anomaly equation, for genus 0, genus 1 and some genus 2
decendent invariants from the KKV formula. The genus 2 computa-
tion relies on double ramification relations with target variety. This
result serves as the initial condition for our induction. In Section 6, we
use previous results to prove Theorem 1 and 3. The property of the
top tautological group RY~*(M, ) reduces higher genus cases to lower
genus invariants discussed in Section 5.
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1. QUASIMODULAR FORMS AND HECKE OPERATORS

We recall basic properties of quasimodular forms and Hecke opera-
tors, see [22, 39], in particular [22, pp. 156-163] and [22, Ch. 3, Sec-
tion 3]. The Hecke theory for weakly holomorphic quasimodular forms
however seems to be less well documented. We thus also include some
proofs.

The following operators will play a central role. For any Laurent

series
(5) fla)= )" ang"
and d € Z~y we define
d S dn - n
Duf =ag.f Baf :nz_ooa"q . Uaf = nz_ooadnq .

We will apply these operators to the Laurent series associated to
certain modular functions. For this we briefly review the definition of
modular forms.

1.1. Quasimodular forms. Let H = {7 € C | Im(7) > 0} be the
upper half-plane. The group GLJ (R) of real 2x 2-matrices with positive
determinant acts on H via

ar +0b a b
A= LI (R).
T A= (1) eoum

Let f: H — C be a function and let

At =

2miT

g=¢e"", y=Im(r).
For k € Z define the k-th slash operator
(flxA)(7) = det(A)*2(cr + d) =" f(A7).

Definition 6. A quasimodular form of weight k for SLy(Z) is a holo-
morphic function f: H — C admitting a Fourier expansion

(6) fl@)=> ang”, gl <1,
n=0



CURVES ON K3 SURFACES IN DIVISIBILITY TWO 9

such that there exist p > 0 and holomorphic functions f,., r =0,...,p
satisfying the following conditions:

(i) the (non-holomorphic) function f= P o fry™" satisfies the
transformation law

ﬂk’Y = fforall v € SLy(Z) ,
(i) f = fo,

(iii) each f, has an expansion of the form (6).

If p = 0 then f is called a modular form. We denote the space of
modular resp. quasimodular forms by Mod and QMod.

Remark 7. If f: Y o fry~" as above with f, # 0, then each f, is a
quasimodular form of weight k& —2r, see [39, Proposition 20]. Moreover,
the last one, i.e. f, is in fact modular (of weight k — 2p). The following
structural results are well-known [39, Proposition 4, Proposition 20]

Mod = C[Cy,Cs], QMod = C[Cs, Cy, Cg]

where

C2i<Q) = —22._';(2;1.)!5721'((1)

is the renormalized 2i-th Eisenstein series. The notion (i) defines the
space AHM of almost holomorphic modular forms and the assignment
f — f is an isomorphism

AHM — QMod.

Under this map, differentiation with respect to % corresponds to dif-
ferentiation with respect to Cs.

The modular functions considered in this paper will usually have
poles at the cusp 7 = 200 corresponding to ¢ = 0. We will refer to
these functions as weakly holomorphic with pole of specified order. We
want to clarify this terminology in the context of quasimodular forms.

Definition 8. A function f is said to be weakly holomorphic quasi-
modular with pole of order at most m > 0, if f satisfies the conditions
in Definition 6 except that each f, is allowed to have a pole at the cusp
100 of order at most m. If p = 0 then f is called a weakly holomorphic
modular form with pole of order at most m.

By parallel arguments as in [39, Proposition 20], the assertions in Re-
mark 7 hold analogously for weakly holomorphic quasimodular forms.
In particular, f, is weakly holomorphic modular with pole of order at
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most m. The space of weakly holomorphic modular forms is generated
by % over Mod, where

Alg)=q]J—q9*

n>1

is the modular discriminant.® As a consequence,

1
fp € EMOd

and since f, is of weight £ — 2p (and there are no non-zero modular
forms of negative weight) we have k > 2p — 12m.

For quasimodular forms we include the following observation.

Lemma 9. The space of weakly holomorphic quasimodular forms with
pole of order at most m is given by

1

Proof. Let f be a weakly holomorphic form with pole of order at most m
and weight £ and let

P
F=Y _fy,
r=0
with f = fp. Multiplying by A™ we have for all v € SLy(Z)
(A" F)ler12my = (A™)12my - (f)ley =A™ f .
Since each A™ f,. is holomorphic at ico this proves
1

Analogous argument shows that the quotient of any quasimodular form
by A™ defines a weakly holomorphic quasimodular form with pole of
order at most m. U

1.2. Hecke operators. Let m € N and consider the set of integral
matrices of determinant m

H,, = { (CCL Z) |a,b,c,d€Z,ad—bc:m}.

The modular group SLs(Z) acts on H,, by left multiplication. The
classical Hecke operators T,, acting on modular forms f of weight k

6See [14] where the authors examine an explicit basis of the space of weakly
holomorphic modular forms.
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are defined by [39, Section 4.1]
Tl = m*?! Z f|k’7

YESL2(Z)\Hm
This definition is equivalent to [22, Ch. 3, Proposition 38|
(7) Tm = Z ak_lBaUd .
ad=m

The action of (7) naturally extends to the action of the g-expansion
of weakly holomorphic quasimodular forms. We prove that the action
again defines a weakly holomorphic quasimodular form. For simplicity
(we will only use this case) we restrict to the case when f has a pole
of order at most one.

Lemma 10. Let f € iQMod be of weight k. Then T,,f is a weakly
holomorphic quasimodular form of weight k& with pole of order at
most m, i.e.

1
Tmf S MQMOCI .

Proof. In [31] it is shown that T,, defines a map QMod — QMod pre-
serving the weight. We briefly recall the key arguments for f € QMod.
The definition of quasimodular forms is equivalent to the condition”

e =3 (55 )+ orana= (4 ) esta@),

e~ cT+d

where f, are as in Definition 6. Defining a modification of the slash

operator for quasimodular forms®

(A = D (o er + ay (A e) or = (4 1) e cLim)

r=0
then the quasimodularity is equivalent to

fllwy = f for all v € SLy(Z) .

This leads to a parallel treatment of Hecke operators as in the classical
context of modular forms. By [31, Proposition 2] we have

flle(vA) = f||rA, for all v € SLy(Z), A € GL (R)

and we define

Tof=m">" > flA.

A€eSLo(Z)\Hm

"This notion is called ‘differential modular form’ in [31]. As pointed out in [39,
Section 5.3], this notion is equivalent to be a quasimodular form.

8This definition differs from [31, Equation 12] by a factor m~P, where p is the
depth of f. Our definition of the Hecke operator differs by the same factor.
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This definition is then independent of a choice of representatives of
SLy(Z) \ H,,. To conclude that T,, f is a quasimodular form, we would
like to argue that it is invariant under (—)||y7y for all v € SLy(Z). This
statement, however, is not sensible at the moment? because the defini-
tion of (—)||xy relies on the existence of associated functions f,.. This
technicality is resolved in [31, Section 2.4, 2.5] by considering a certain
period domain P and identifying quasimodular forms as holomorphic
functions on P, which are left SLy(Z)-invariant and satisfy a transfor-
mation property for a right action of the subgroup of upper triangular
matrices. The domain P is contained in GLy(C) and it contains the
upper-half plane H. The actions are given by left resp. right multiplica-
tion. The argument carries over to weakly holomorphic quasimodular
forms without change.

A particular set of representatives for SLy(Z) \ H,, is given by

a b
{%:(0 d) \a,deN,ad:m,0§b<d}.

Note that (—)||xv = (—)|x7» because the terms for » > 0 vanish. Since

wirt =3 ¥ (7).

0<b<d

we thus recover equation (7):

Tof(7) = mk/2—1 Z A~k f (GT(;— b)

ad=m
0<b<d

= > d"'B.U.f(7).

ad=m

For weakly holomorphic quasimodular forms f € iQMod we follow
the same proof. The difference here is that the functions f, are allowed
to have simple poles at ico. The slash operator (—)||x however may
turn a simple pole into a pole of higher order. For (—)||x7, this or-
der is bounded by m. As a consequence, T,,f is weakly holomorphic
quasimodular with pole of order at most m. O

For our study of the multiple cover formula in Section 2 we will
require a more flexible notion, where the exponent is not necessarily
related to the weight. The action of this operator will preserve the
weight of weakly holomorphic quasimodular forms, it will, however,
introduce poles and level structure.

9We are grateful to the referee for pointing out this subtle detail.
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Definition 11. For ¢ € Z, we define
Tm,f == Z aéilBaUd .

ad=m

The operator T,,, is simply the m-th Hecke operator of weight ¢,
which we let act on functions of weight k. By Mobius inversion we
may rewrite each of them in terms of the other (see [1, Section 2.7]).
For this, let u be the Mobius function.

Lemma 12. The action of T,,, on weakly holomorphic quasimodular
forms of weight k is given by

Tm,e = Z Ck,2<a)BaTd7

ad=m

ot =5 (2) ()

rla

where

Proof. The formula for ¢, above can be rewritten as

Cro = Idg_l * ([L . Idk_l) s

where Id,_1(n) = n*~! is the (¢ — 1)-th power function and x denotes

Dirichlet convolution, i.e. for functions g, h we have
(gxh)(m) = gla)h(d).
ad=m

Note also that B is multiplicative with respect to composition, i.e. for
e | a we have B, = BB« and therefore

Tm,ﬁ - Z ae_lBaUd

ad=m
= > (Idp—y * (i~ Idgy) % Idi—y) (a)BoUg
ad=m
= Z ZC&@(G) (g>k1 BaUd
ad=m ela ¢
= Z cpo(u)By ka’leU%
uw=m v|w
= Z cu(u)BuTw.
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As a consequence we obtain the following result. Here, we let Mod(m)
and QMod(m) be the space of modular resp. quasimodular forms for
the congruence subgroup I'g(m) C SLy(Z), see the introduction.

Proposition 13. Let f € iQMod be of weight k, then T,,,f is a
weakly holomorphic quasimodular of weight £ with pole of order at
most m for the congruence subgroup I'g(m) C SLy(Z)

Tm,gf S ﬁQMOd(m)

Proof. We use the formula in Lemma 12 and treat each summand sep-
arately. By Lemma 9 each T,f satisfies

1

The action of B, raises g — ¢%, or equivalently 7 — a7, so it maps
QMod to QMod(a), see [22, Ch. 3, Proposition 17]. Therefore

1
B, T ——QMod(a) .
€ A M
Finally, the weakly holomorphic modular form for I'y(a) defined by
Afg)”
A(g?)

is in fact holomorphic at 700, i.e. contained in Mod(a). Hence the same

is true for its d-th power and we find
1
BaTdf c MQMOd(&) .

which concludes the proof since QMod(a) C QMod(m). O

For later reference, we list the following basic commutator relations
between the above operators acting on weakly holomorphic quasimod-
ular forms f of weight k. Recall, that the algebra QMod(m) is freely
generated by the Eisenstein series Cy over the algebra Mod(m) of mod-

ular forms. Formal differentiation with respect to Cs is therefore well-

defined.
Lemma 14. Let d, e € N and ¢ € Z, then
(i) BaBe = B4 = BBy,
(ii) UgUe = Uge = U.Uq,
(ii) b,B4 =dBsD,, UsD,=dD,Ugy,
)

(iV me_,_QDq =m Dqux,
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d _ d
(V) ETm,K—f—Z = mexE )

(vi) 35Dyl = —2E.

Proof. The proof for (i)-(iv) follows directly from the definition. For (v)
one may use that under the isomorphism f»—) f the differentiation %
corresponds to differentiation with respect to ﬁ, see Remark 7. The
statement (v) is then checked as an identity of Laurent series in ¢ with

1

polynomial coefficients in y~'. The commutator relation (vi) is well-

known, see e.g. [39, Section 5.3].
]

2. MULTIPLE COVER FORMULA

This section contains a discussion of the multiple cover formula. We
start by recalling the conjecture formulated in [32]. Then, we study
the conjecture for the descendent potentials associated to elliptic K3
surfaces. The result is expressed in terms of Hecke operators. The
discussion naturally leads to a candidate for the holomorphic anomaly
equation in higher divisibility. We conclude with a proof of the multiple
cover formula in fiber direction.

2.1. Multiple cover formula. Let S be a nonsingular projective K3
surface, § € Hy(S,Z) be a primitive effective curve class, m € N and
d | m be a divisor of m. The proposed formula by Oberdieck and
Pandharipande involves a choice of a real isometry

pam: (HASR), () = (H*(SuR). ()

between two K3 surfaces such that

Oim (%ﬁ) € Hy(Sy,7)

is a primitive effective curve class’®. In [9] the second author proved
that such an isometry can always be found and Gromov—Witten invari-
ants are in fact independent of the choice of isometry.

Consider integers a; € N, cohomology classes v; € H*(S,Q) and let
deg = > deg(;). Then, the conjectured multiple cover formula [32,

0We view curve classes also as cohomology classes under the natural isomor-
phism Hy(S,Z) = H?(S,7Z).
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Conjecture C2], identical to Conjecture 4 in Section 0, is

<Ta1 (71) -+ - T (’Yn)>g,mﬁ
_ Z d29*3+deg<ra1(<pd,m(71)) .. .Tan(wd,m<7n>)>g7¢d’m(%5) :

dlm

Let S be an elliptic K3 surface with a section'!. The full (reduced)
Gromov-Witten theory of K3 surfaces is captured by S with curve
class mB + hF' via standard deformation arguments using the Torelli
theorem. In fact, the multiple cover conjecture can be captured entirely
via S as well: we may choose the same S; = S for any d dividing m

and h. For [ € Q* we define

¢i: H7(5,Q) — H*(5,Q)

acting on U = Q(F, W) as

and trivially on the orthogonal complement U+. For d | m and d | h
we may choose @g,, as ¢a:

h h—
64 (%BJFEF) — B+ (%H) F in Hy(S,Z)

which is a primitive curve class.

Altering the curve class via the isometry ¢ therefore results in ad-

m

d
changed. This explains the change in exponents

ditional factors of % or & while keeping the descendent insertions un-

29 — 34 deg <— 29 — 3 + deg

and the factor m°&~9% in the multiple cover formula below for the
descendent potential. We use the operator T,,, introduced in Defi-
nition 11. As pointed out in Section 0.4, this is the m-th Hecke op-
erator for functions of weight ¢, which we let act on F,; (which has
weight 2g — 12 4 deg). Before stating the conjecture, we want to dis-
cuss the role of tautological classes and compatibility with respect to
restriction to boundary strata.

HNotations here are as in Section 0. In particular, we use the modified degree
function deg.
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2.2. Compatibility I. We will find it convenient to use pullbacks of
tautological classes from M, instead of 1-classes on M, (S, B). For
2g—24+n>0, let

R (Myn) € A" (M)
be the tautological ring of M, ,,. For a tautological class o € R*(M,,),
we consider the invariants

QY15 ey Yn) = Tra U | | evi(v),
< ) [Mg,n(S,8)]"ed 11

where 7: M, (S, 8) = M,,, is the stabilization morphism. We write

Fg,m (057 Y- 7711) = Z <Oé, ATEEN ’fyn>g,mB+hF qhim
h>0

for the generating series in divisibility m. By the usual trading of
cotangent line classes, these generating series are related to the ones
defined via cotangent classes on M, (S, 3). Any monomial in - and
k-classes can be written, after adding markings, as a product of -
classes. This procedure leaves deg and deg unchanged. Before stating
the multiple cover formula below, we explain the compatibility with
respect to restriction to boundary strata in M, (S, 3).

A crucial point for this compatibility is the splitting behavior of the
reduced class. Consider the pullback of the boundary divisor

Mg—l,n+2 — Mgﬂ

under the stabilization morphism w. Let « be the pushforward of a
tautological class (we will omit pushforwards in the notation below).
By the restriction property of the reduced class, we obtain

Fg,m (047’7) = Fgfl,m (Oé,’}/As) .

Then, the compatibility follows from two facts. Firstly, for the diagonal
class Ag we have

(deg —deg)(As) =0,
thus the factor md° =9 in Conjecture 15 below remains unchanged.

Secondly, we have deg(Ag) = 2 which precisely offsets the genus re-
duction from ¢ to g — 1 in the formula

(=29 —2+deg.

Next, consider the pullback of the boundary divisor

Mgl,N1+1 X M92,7L2+1 — Mgvn
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under the stabilization morphism 7. Let
a=oaNay, {l,...,n}=LUl, ~v=vmKmy

be the pushforward of the product of tautological classes, the split-
ting of markings, and the splitting of the insertions respectively. The
Kiinneth decomposition of the class of the diagonal is denoted by

[Ag] =D ARAT.
J
The splitting property implies that

Fom(ai) = > Z<F9hm1(aﬂhﬁj)~FZifm2(0m’mN)

mi+mo=m j

+ ngfnn (051; 711Aj) ’ ng,m2 (al;fVIlAj)> :

The virtual class for non-zero curve classes vanishes, thus the contri-
bution F"" is a number. As a consequence, no non-trivial products of
generating series appear when we use boundary expressions. By similar
consideration as above, using the deg and deg for the diagonal class,
we find that the multiple cover formula is compatible with respect to
this boundary divisor as well. We can now state the multiple cover
formula for the generating series with tautological classes:

Conjecture 15. For deg-homogeneous v; € H*(S,Q),

Fom (a; Yige o ,fyn) — ppdeg —deg T <Fg,1 (a; Vi ,fyn)) ,
where deg = > deg(v;), deg = > deg(7;) and £ = 2g — 2 + deg.

Based on the discussion above, the same formula is conjectured for
the potential

Fom (Tar (1) - - - Ta,, () -

We now show that our presentation of the multiple cover formula is
equivalent to the original formula.

Lemma 16. Conjecture 4 for all d | m is equivalent to Conjecture 15
for m.

Proof. By the deformation invariance of the reduced class, the Gromov—
Witten invariants for arbitrary curve classes are fully captured by an
elliptic K3 surface with a section. The primitive curve classes are B +
hEF € Hy(S, 7). Taking the coefficient of ¢™"~™ in Conjecture 15 gives



CURVES ON K3 SURFACES IN DIVISIBILITY TWO 19

a multiple cover formula for the curve class mB + mhF which matches
the formula in Conjecture 4. It is the other implication which we have
to justify.

The generating series F ,,, involves curve classes mB+hF of different
divisibilities bounded by m. We apply Conjecture 4 to each invariant

and use the isometries ¢. Note that each appearance of v; = F in-

d

troduces a factor of %, while each appearance of v; = W gives .

d )
Moreover,

{i|vi=F} = [{i|7 =W} = deg—deg,

and therefore

Fgm (04; AT >77L) - Z <a; REEEES ’7">97m3+hF @
h>0
B o [T deg —deg —m
_ Z Z J29—3+deg (E) <a; Y1, .- ,7n>g’B+<m(f;gm)+1)F CJh
h>0 djm
dlh
— e —dew § g0-3+deg ( T YT R o B
C”Zm hzzo g7B+(d(h d)+1)F
_ yppdeg —deg Zng—?nL@ (BdU% Z <a; Y1y .- 77n>g BAhF qh_1>
e h=0

_ ,deg —d 2g9—3-+d .
— e s 5 2 B U F (0, )
dlm

= mdeg _% Tm,ﬁ (Fg,l (aa Y1, .- 7771)) .

As a direct consequence, the multiple cover formula implies level m
quasimodularity.

Proposition 17. If the generating series F,,, satisfies the multiple
cover formula, it satisfies the quasimodularity conjecture. More pre-
cisely,

1
Fg,m c WQMOd(m) .

Proof. The descendent potentials for primitive curve classes are weakly
holomorphic quasimodular with pole of order at most 1 and weight 29—
12+-deg, see [29, Theorem 4] and [8, Theorem 9]. The claim thus follows
from Proposition 13. U

)

0
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2.3. Multiple cover formula in fiber direction. When the curve
class is a multiple of the fiber class F', the multiple cover formula re-
duces to a property of the Gromov—Witten invariant of elliptic curves.
Relevant properties are conjectured in [38].

Let S — P! be an elliptic K3 surface with section and let 3 = mF.
By Section 6, Case 1, we may assume at least one of the insertions is
the point class v = p and g > 1. Let

t: BE— S

be the inclusion of a fiber, representing the class F. Since the point
class is represented by a transverse intersection of E and the section B,
the Gromov-Witten theory of S localizes to the Gromov-Witten theory
of E with the curve class mE. Computation of the obstruction bundle
shows that the invariant is of the form
s . . E

<Ta1 (P)Tas (72) - - - Ta, (7n>>g,mp = <)‘g*1§ Tay (W) Tay (72) -+ - Ta,, (4 Vn)>g7mE
where A\,_; = ¢,_1(E,). In particular, if ; € Q<F> oUto® Q<p>, the
invariant vanishes. Consider the following generating series

FgE (T (1) -+ - Ta () = Z Ag-13 Ty (1) - - T (%)>me q"

where v; = 1 or w and »_a; + > deg(v;) =g —1+n.

The generating series Ff has a simple description in terms of Eisen-
stein series. The following formula is conjectured in [38].

Lemma 18. For g > 1,

|
FgE(Tg_l(w)) = %ng.
Proof. In [38, Proposition 4.4.7] this formula is given under assuming
the Virasoro constraint for P* x E. The Virasoro constraint for any
toric bundle over a nonsingular variety which satisfies the Virasoro
constraint is proven in [13]. Combining this result with the Virasoro
constraint for elliptic curves [35], the result follows. u

When g = mF, Conjecture 4 is equivalent to the following proposi-
tion.

Proposition 19. There exists ¢ € Q such that

Ff (Tal (W) .. Ta, (W)Ta (1) . .Taw<]_)) —c szlFf (7_971(&})) .
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Proof. Boundary strata with a vertex of genus less than g do not con-
tribute because the invariants involve \j, vanishes on M, (F,m) when
h > g. If " > r, then > a; > g and we can reduce to the case when
r" = r by the topological recursion on the 1-monomial in RZ9(M,,,)
[23]. If 7" = r, then > a; = g — 1 and similar argument as in Section 6,
Case 3 can be applied. Therefore FgE is proportional to

Fo (rg1(w)mo(w)™) = D) 'Fy (191 ()

where the equality comes from the divisor equation. U

Remark 20. One can find a closed formula for the constant ¢ € Q by
integrating tautological classes on Mgm.

3. HOLOMORPHIC ANOMALY EQUATION

This section contains a proof of Proposition 5. We derive the holo-
morphic anomaly equation for m > 1 from the conjectural multiple
cover formula, such that both are compatible!?. It turns out that the
equation is almost identical to the one in the primitive case. Additional
factors appear only in the last two terms, which are specific to K3 sur-
faces. We refer to [34, Section 7.3] for explanations on the appearance
of these terms.

Proof of Proposition 5. Let v1,...,v, € H*(S) with
deg = deg(y;), deg=") deg(m).

We will simply write v to denote v1,...,7,. Assume that the multi-
ple cover formula (4) holds for all divisors d | m and all descendent
insertions. Using Lemma 16, also Conjecture 15 holds. By Proposi-
tion 17, the descendent potentials are quasimodular forms of level m
and we can consider the ﬁ—derivative. We apply the ﬁ—derivative to
Conjecture 15 and use the commutator relations Lemma 14 to obtain:

d d

dC, Fom(asy) = acs, (mdeg _g—rmﬂg—%% Fy (o 7)>
d

deg —deg+1 .
— Tm,2974+@d—612 Fg1 (Oéa ’Y) .

=m

We want to explain that the last row precisely recovers the definition
of Hy,, in (1), after applying the holomorphic anomaly equation for

2We should point out that this derivation should be lifted to the cycle-valued
holomorphic anomaly equation. Tautological classes play no role here.
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the primitive series [33, Theorem 4]:

d
d—@Fg,l(a;’y) =Hg1(;7)

We do so by explaining how each term of H ; (a; 7) is affected:

(i) The degree deg of F,_11(c;yAp) has increased by one. The

genus, however, dropped by 1. Thus, the first term precisely
matches the multiple cover formula, i.e.

Fg—1,m (04 7AlP’1) = me _E+1Tm,2g—4+ﬂ<l:g—l,l (a; VAP1)> .

(ii) The virtual class is non-zero only for curve class f = 0 and

genus 0, 1, see Section 0. In these cases, the potential F;’;" is
simply a number and the operator T,,, acts non-trivially only
on Fy, . We distinguish the two cases:

g2 = 0. The virtual class is given by the fundamental class and
the integral is given by intersection pairing on S. Non-trivial
terms are obtained from ¢ =1 or F. If §;/ = 1 then

deg(W/b) = @(7&) =2.
The modified degree deg of Fy, (0411; V1 5i) has decreased by 2,
whereas deg decreased by 1 (the insertion §; = F' contributes
deg = 1). The term thus matches the multiple cover formula:
Fgl,m (05[1; v 52)

_ deg —deg+1 .
= m® e Tm,zg—4+@<|:gl,1(0ﬁu7115z‘)>-

If §; = F' then

deg(Vb) =1 ) %(712) =2.

The modified degree deg of Fy, 1 (0411; V1 5i) has decreased by 2,
whereas deg decreased by 1. The term matches the multiple
cover formula.

g2 = 1. The virtual class is given by c3(S) and the integral
is given by intersection pairing on S. Non-trivial terms are
obtained only from ¢ = 1 and

deg(vr,) = deg(v,) = 0.

Analogously to case (i), the degree deg of Fy, 1(ar;vr,d;) has
increased by 1, deg remained unchanged, and the genus dropped
by 1. The term matches the multiple cover formula.
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(iii) The modified degree deg of F (awi; N1y ooy T MYy e ,fyn) has
decreased by 2, whereas deg decreased by 1. Again we find that
the term matches the multiple cover formula

Fg,m (awu BACEREE) W*W*/yia s 7771)

_ deg —deg+1 . *
= e 48 Tm,2gf4+%<l:g,1 (Oﬂpi, Y1y oy T Ty - - - ,"}/n)) .

(iv) The degree of (;, F)F,1 (a; o P S %) remains unchanged,
whereas deg decreased by 2. An additional factor of % therefore
appears:

1
E(fyi,F>Fg7m(oz;fyl, U ,fyn)

= mdeg*@Jrle’Qg,zpr%((’%, F)Fg,l (Oé, Y1y - F, e ,"}/n)) .
(v) The term Fg1 (..., 00(vi,7))s-- -, 02(%,75), - - ) is similar to the

previous case: deg remains unchanged, whereas deg decreases
by 2, giving rise to an additional factor of %:

1
EFg,m(/yl) s 70-1(/Yi77j)7 .- '70-2(7i77j)7 B 77n)

= mdeg _@+1Tm729—4+@(|:g,1 (’Yla ceey 01(7@'7 ’Yj)a sy 0-2(7i7 7])7 cee 77n))

We arrive at the level m holomorphic anomaly equation (1) which ap-
peared in Section 0. O

3.1. Divisor equation. For primitive curve classes, it was pointed out
in [33, Section 3.6, Case (i)] that the holomorphic anomaly equation in
genus 0 is compatible with the divisor equation. For divisibility m, let

d
o (v, FYDy +m{y, W), ~€ H*S).

The divisor equation implies that
Fgm (Tal (1) -+ Tan_ (’7n71)7-0<’7n>)

d
= d—%FQ,m (Tal (/71) < Tan_y (Vn—l))

n—1
+ Z ngm (Tal (71) . 'Tai—l(% U 'Yn) .- -Tanfl(')/n—l)) .
=1
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The compatibility with the divisor equation corresponds to

8)  Hgm(Tai(0) - - Tansy (n=1)70(70))

d
= d—Hgm (Tal (1) -+ Tan_y (’7n71))

n

B Qkngm (Tal (71> coTan_1 (fyn*l))

n—1

+ Z Hg,m (Tal (71) e 'Taifl(% U an) < Tap_y (f}/n*l)) )
i=1
where k is the weight of Fy (74, (71) - - - Ta,_, (a-1)) and we have used
the commutator relation
d
Dy | = 2k,
el
The same check as in the primitive case works for arbitrary divisibil-
ity. This relies on the fact that the divisor equation for W is the same

as applying the differential operator

d
Dq:qd—q

to the generating series. Indeed, for the curve class § = mB + hF,
(BW)==2m+h+m=h—m,

which matches the exponent of ¢"~™ in the generating series F, ,,,. The
divisor equation for I’ acts as multiplication by m on the generating
series.

In Section 6, the refined induction reduces any generating series ul-
timately to genus 0 and 1. We thus have to justify compatibility of the
holomorphic anomaly equation for generating series of the form

Fim(ro(p)70(71) - - 70( ), € HX(S).

This compatibility however is true. By Proposition 28, the multiple
cover formula, which is compatible with the divisor equation, holds
in genus < 1. Thus, we also find compatibility for the holomorphic
anomaly equation.

Example 21. We consider Fq,,(7(WW)?) to illustrate the above com-
patibility. To compute Hg,,, we use that o(W X W) = U=+, where the
endomorphism o is as defined in Section 0. Since the curve classes are
contained in U, application of the divisor equation to a basis of U+t
implies

FO,m (TQ(UL)) =0.
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We find that
40
HO,m (7'0(W>2) = —4F07m (7'1(1)T0<W)) + EFO’m (To(F)T()(W)) .

In the above notation, 7, = W is the second W and k = —10 is the
weight of Fo, (70(W)). We have to check that

Hom (To(W)?) = DgHo,m (To(W)) + 20Fq 1, (70(W)) -
By the dilaton equation, we can verify
Hon (70(W)?) — DyHom (70(W))
= 2D, Fon(1(1) ~ 4Fon (1)) + = Fo (o F)ro(1V)
= 4D Fo,n (0) — 4D,Fo, (0) + 20F,,, (0(W))
= 20F g, (To(W)) .

Example 22. The above example in genus 0 illustrates how the second
last term in the holomorphic anomaly equation (2) plays a role. We
consider

Fim (7'1<W)7'0<W))

to show how the last term, i.e. the term involving o, interacts non-
trivially with the other terms. The corresponding series H; ,, are

Hl,m (Tl(W)To(W)) = 2F0,m (Tl(W)TQ(W)To(].)To(F))

_ 2(F1,m (r2(1)70(W)) + Frm (Tl(W)T1(1))>

4 % <F17m (7’1 (F)TO(W)) +Fim (Tl(W>TO<F>))

2
— —Fim(¢1;Ap1),
m
Him (7'1(W)) =2Fom (Tl(W)TO(l)TO(F))
— 2F1,m (7'2(1))
20
+ EFLm(Tl(F)) .
Let k = —8 be the weight of Fy,,(71(W)). Then (8) is equivalent to
Hl,m (Tl(W>T0<W)) = Dqu,m (7'1<W)) — 2]€F1,m (7'1<W)) .
The term Fy ,, (1/11; AUL) can be computed using
1 _
Y= [01] + 5 [00] € A (M),

where [6g] € A*(M ) is the class of the pushforward of the fundamen-
tal class under the map
MOA — MLQ
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gluing the third and fourth markings and [d] is the class of the bound-
ary divisor of curves with a rational component carrying both markings.
The genus 0 contribution vanishes by the divisor equation. Since the
rank of U~ is 20, we obtain the genus 1 contribution

F1,m(¢1; AUl) = 20F1,m(To(P)) .
The divisor equation for F' implies that

o (1 (W)7o(F)) = 20F1 (1)) + 2 Fon ()

We can now verify the compatibility by a direct computation using
divisor and dilaton equation:

Him (7'1<W)7'0<W)) =D Hlm(7'1<W)) — 2F1m(7'1(W)) —2F 1 m (7'1<W)7'1(1))

+%F1m(ro(p)) @Flm(ﬁ@v)m(ﬁ’))

— EFLm('@bl;AUl)
= D, Him (Tl(W)) —4F m(Tl(W))

20
EFlm(TO ) _Flm(Tl W)To(F))
40
- EFlm(TO )
= Dqu,m(Tl ) + 16F1m(7'1 W))

4. RELATIVE HOLOMORPHIC ANOMALY EQUATION

In this section, we first state the degeneration formula for the reduced
virtual class under the degeneration to the normal cone. For primitive
curve class, the formula is proven in [29]. For sake of completeness, we
summarize a proof for arbitrary divisibility in Appendix A. Then, we
state the relative holomorphic anomaly equation and prove the com-
patibility with the degeneration formula.

4.1. Degeneration formula. Let S — P! be an elliptic K3 surface
with a section. For m > 1, let § = mB + hF" be a curve class. Choose
a smooth fiber E of S — P!. Let e: S — A! be the total space of the
degeneration to the normal cone of F in S. This space corresponds to
the degeneration

(9) S~ SUpP'x E.

Over the center ¢ : 0 — Al the fiber is SUg P! x E and over t # 0, the
fiber is isomorphic to S. Let M, (e, 3) be the moduli space of stable
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maps to the degeneration §. Over t # 0, this moduli space is iso-
morphic to M, (S, ) and over ¢ = 0, this moduli space parametrizes
stable maps to the expanded target

So=SUgP'x EUp---Us P! x E.

Let
v = (g1, g2, M1, N2, by, ha)
be a splitting of the discrete data g, n,h and let 8; = mB + h; F be the
splitting of the curve class. An ordered partition of m
o=, )
specifies the contact order along the relative divisor E.

Let [ = length(p) and M, ,,(So, V), be the fiber product

(10) Mg,n(soay)u :Mgl,m(S/Eaﬁl)u XElM Pl X E/EaBQ)u

g2ms (

of the boundary evaluations at relative markings' and let
szu: Mg,n(‘SOa V),u — Mg,n(‘gOa 6)

be the finite morphism. Let Agi: E' — E' x E' be the diagonal em-
bedding.

Theorem 23. The reduced virtual class of maps to the degenera-
tion (9) satisfies the following properties.

(i) For ¢: {t} = Al, the Gysin pullback of reduced class is given
by
a[Myn(e, B = [Myn(St, B
(ii) For the special fiber,

[Mg,n<807 6)]Ted = Z Hll'luz by [Mgm(SOa V)u]red :

V?/J/

(iii) On the special fiber, we have the factorization
[MQ,N(S(% V)M]Ted = A'E'l ([Mghnl(S/Ea Bl)u]TEd

x (M, ., (P X E/E, ),]"")

BWe put * to indicate (possibly) disconnected theory. Namely, for each con-
nected component C' of the domain curve, intersection of C' with the relative divisor
E is nontrivial.
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Proof. When m > 1, the reduced class of the disconnected moduli space
M ;n(S /E, B) vanishes on all components parameterizing maps with at
least two connected components. Therefore, disconnected theory can
only appear on the bubble P! x E. The proof is given in Appendix A.

O

Denote an ordered cohomology weighted partition by

t=((,61), ., (i, 8)) , 6 € H'(E)

and let w € H?(F) be the point class. The descendent potential for
the pair (5, F) is defined analogously to the absolute case:

P (v 1) =) {71, | u>gm3+th
h>0

The descendent potential for the pair (P! x E, F) is defined by

—m

G (v, Y | 1) =D {71, T | g>f}i§j§F 7"
h>0

As a corollary, we get the degeneration formula of reduced Gromov—
Witten invariants.

Corollary 24. Let vq,...,7, € H*(S) and choose a lift of these coho-
mology classes to the total space S. Then

(1)
Py (7 () ) = 30 50 Wt ) gt ().
Vo pFE e

where
HV = ((”175¥)7 SR (:ul?(;lv)) and How = ((:ulaw)v SR (Nlaw)) .

Proof. By Theorem 23, we are left to prove that the relative profile p,
on S/E has vanishing contribution. Let x be the intersection of the
section of the elliptic fibration and the fiber E. We consider (E,z)
as an abelian variety. Let K be the kernel of the following morphism
between abelian varieties

E' = Pic®(E), (z;); — OE(ZM(SU@ — SL’)) i

Consider a stable map f from a curve C' to an expanded degeneration of
S/E. The equality f.[C] = p; (after pushforward to S) in Hy(S, Z) lifts
to a rational equivalence of line bundles on S because the cycle-class
map

c1: Pic(S) — H?(S,7) = Hy(S,7)
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is injective. Intersecting with the relative divisor, the two line bundles
are, respectively, Op(>_ p;x;) and Og(maz). Thus, we see that the
evaluation map M, .., (S/E, 1) — E' factors through K. Since K C
E' has codimension 1 a generic point on E' does not lie on K and thus
the contribution from the relative profile p,, vanishes. O

4.2. Relative holomorphic anomaly equations. Assuming quasi-
modularity, we have two ways to compute the derivative of F,,, with
respect to Cs:

(i) Apply the degeneration formula Corollary 24, together with the
holomorphic anomaly equations for (S, E) and (P! x E, E).

(ii) Apply the holomorphic anomaly equation (3) for S, followed by
the degeneration formula for each term.

We argue that both ways yield the same result. This compatibility is
parallel to the compatibility proved in [34, Section 4.6]. We first state
the holomorphic anomaly equations for the relevant relative geometries.

Relative (P! x E, E). Consider 7: P! x E — P! as a trivial elliptic
fibration over P!. For the pair (P! x E, E) the holomorphic anomaly
equation holds for cycle-valued generating series [34]. The equation
for descendent potentials can thus be obtained by integrating against
tautological classes o € R*(M,,,). For insertions v; € H*(P! x E, Q)
we will simply write . Let p = ((,Ul, 0)y ey (puy 51)) and ' be ordered
cohomology weighted partitions. We denote by

Gom(p oz | i) Z<n|a,v|u>§n§£’:,;;
h>0

the disconnected rubber generating series for P! x E relative to divisors
at 0 and oo. Let A C E X E be the class of the diagonal. Define the
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generating series

Prel,o( oy | H)
— G (057 A | )

+2 Z Z H G;’ilgz((xh;’yh | <<b7 1)7 (blv AE,Zi)?zl))

9=g1+92 b;bi,...,bp
{1,...,n}=[1u12 U1y 0lp
Vi€lyy; €H?(E)
h>0

G;g.m(((bv 1)7 (blv AE,&)?:l) | Afy3 Vo | H)

—2 Z Gt (i Y1, -+ Yimts T Yokt - Y | 1)

_QZGrel a7| Ml)él) (Mzawrelﬂ-*ﬂ-* ) '7(,ul751))

where 1/ is the cotangent line class at the i-th relative marking and
A=Y Ag;, @AY 12, 1s the pullback of the Kiinneth decomposition of
Apg at the corresponding relative marking. The holomorphic anomaly
equation takes the form:

Proposition 25. ([34, Proposition 20]) GI%:*(a; 7 | p) is a quasimod-
ular form and

d 1, 1
rel,e . — Pre 7. . A
ics —— Gy (v | p) = Pyinr (a5 | )

Relative (S, E'). Since the log canonical bundle of (S, F') is nontrivial,
relative moduli spaces in fiber direction have nontrivial virtual funda-
mental class. Define

Fet (s [ 0) = 3 ain | 0)5 ¢

h>0

Recall that we denote the pullback of the diagonal of P! as

2
Ap =1RF+FR1=Y §X4 .

i=1
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Define a generating series

Hrel ( 7|H)
—Ffllm( 27, A | o)

+ 2 Z F;‘ilm(ah; V115 51 | :u) FZ;TO el (alg; ery 51\/ | (b)

9=g1+92
{17...,71}:]1\_”2
1€{1,2}

_'_2 Z Z HZ 1 ZF.Z’ilm(Oéh;fyh | ((b7 1)7 (biuAE,&)?zl))

g=g1+g2 b;b1,...,bn
{1,..,n}=0LUls Iy,..,lp
Vi€lyy; €H?(E)
h>0

X G;Q:”fb(«b? 1)7 (bhAé,&)?:l) | Ay3 Vo | H)

- QZFrel Qi3 Vs - s Vimls T Vi Vit 15+ - Y | 1)

_ szrel (1, 81), - -, (i, 02716, - (s 61)))
20 rel
o Z<%,F>Fg,m(am, e B | )
4 Z Frel ;Y. ,Ol(via’yj)? . ,02(%>%), ey In | H) .
1< 3 j
J ith Jjth

The conjectural holomorphic anomaly equation for (S, E') has the fol-
lowing form:

Fel (a; € QMod(m
(037 | 1) € o QMod(m)
and

d rel rel

Proposition 26. Let m > 1. Assuming quasimodularity for F,,
and Fge}n, the holomorphic anomaly equations are compatible with the

degeneration formula in the above sense.

Proof. The proof given in [34, Proposition 21] treats virtual fundamen-
tal classes, not reduced classes. The splitting behavior of the reduced
class with respect to restriction to boundary divisors [29, Section 7.3]
calls for a slight adaptation of the proof. For this, we introduce a formal
variable e with €2 = 0. We can then interpret reduced Gromov—Witten
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invariants of the K3 surface as integrals against the class'®
(Mg (S, B)]"" + & [Myu(S, B)]"

followed by taking the [e]-coefficient. We consider a similar class for
S/E. This class has the advantage of satisfying the usual splitting
behavior of virtual fundamental classes. Thus, for this class one can
follow the proof of compatibility given in [34, Proposition 21]. All the
terms appearing in the computation (ii) also appear in computation (i).
We are left with proving the cancellation of the remaining terms in (i).
This follows from comparing 1!°-class and the 1)-class pulled-back from
the stack of target degeneration [34, Lemma 22]. In particular, we
match the following terms: the third term of H™ times G™"® with the
fourth term of F™ times P™*; and analogously for the fifth term of
H™! times G™"* with the second term of F*® times Prebe. O

The main advantage of the holomorphic anomaly equation is that it
is compatible with the degeneration formula. Thus, the genus reduc-
tion from the degeneration formula connects the low genus results with
arbitrary genus predictions. On the other hand, it is not even clear to
say what should be the compatibility of the multiple cover formula and
the degeneration formula.

5. TAUTOLOGICAL RELATIONS AND INITIAL CONDITION

This section contains a proof of the multiple cover formula in genus 0
and genus 1 for any divisibility m. It is a direct consequence of the
KKV formula. However, as initial condition for our induction we also
require a special case in genus 2, which cannot be easily deduced from
the KKV formula. We treat this descendent potential separately, using
double ramification relations [3] for K3 surfaces. This approach is likely
to give relations in any genus and will be pursued in the future.

5.1. Double ramification relations. In this section we recall double
ramification relations with target variety developed in [2, 3].

Let PBic, ,, be the Picard stack for the universal curve over the stack
of prestable curves M, ,, of genus g with n markings. Let

(13) m: € — Pic,,, si: Pie,,, > € L= C w = €

We thank G. Oberdieck for pointing this out.
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be the universal curve, the i-th section, the universal line bundle and
the relative dualizing sheaf of w. The following operational Chow
classes on Pic, ,, are obtained from the universal structure (13):

b 1/}2 =0 (5;‘“’#) S A})p(micg,n) )
o & =a(si8) € Ay (Picy,)
® 1) = Tk (Cl (’8)2) S Ac1>p<(‘]3icg,n) :

Let A = (ay,...,a,) € Z" be a vector of integers satisfying
(14) » ai=d,
where d is the degree of the line bundle. We denote by P, ; the
codimension ¢ component of the class

n

r—ht(Ts) 1, 1
Z [Awt(Ty)]| Jrx HeXp <§aﬂ/h‘ + aifi) H exp (—Qn(v))
I'eGy n.a i=1 veV(ls)

wGWp’T

[

e=(h,h")€E(T)

1— exp < w(h)w(h") w(h (1/} + 'l/}h/))
Un + Yw '

We refer to [3] for details about the notations. This expression is
polynomial in 7 when r is sufficiently large. Let Py , ; be the constant
part of P .

Theorem 27. ([3, Theorem 8]) Py 4 ;= 0 for all ¢ > g in A, (Bic,,,).

9,

After restricting Py, ; to (14), this expression is a polynomial in
ai,...,a,_1. The polynomiality will be used to get refined relations.

Let L be a line bundle on S with degree

/Bcl(L):d.

The choice of a line bundle L induces a morphism

or: Mg,n(S, B) = Pic,,, [f: C— S| (C,f°L).
Then Theorem 27 gives relations
(16)  Pag(L) = @5 Py g g N [Mgn(S,8)]* =0 forall ¢ > g

in Aginc(Mgn(S, ).
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5.2. Compatibility II. The relations among descendent potentials
coming from tautological relations on M, (S, 3) are compatible with
the multiple cover formula. This follows from two observations. Firstly,
the splitting behavior of the reduced class, discussed in Section 2.2, is
crucial. It is already crucial to justify compatibility with respect to
boundary restriction for tautological classes pulled back from M,,,.
For tautological relations on Mgm(S, B), a second fact, which we want
to explain below, is essential for the compatibility.

Forc> g >0, A€ Z" and b € Z, consider the series of relations

gc,bA,db(L®b) =0
obtained by tensoring the line bundle L by b times. For each coefficient
of a monomial in a;-variables, this expression is polynomial in b and
hence each of b-variable is a relation. As a consequence, each term of
a relation P74 ,.(F') gives the same value of

maes —des

where deg(¢) = 1 and deg(§) = 0, as in Definition 0.1. The same holds
true with the roles of F' and W interchanged. Thus, the relations are
compatible with the operator

deg —de
meee _ng,Qg—Q-i-%a

which gives the multiple cover formula in Conjecture 15.

5.3. Initial condition. The Katz-Klemm-Vafa (KKV) formula im-
plies that the generating series of \,-integrals

Fgm (Ag:0)
satisfy the multiple cover formula [36]. Here, A\, = ¢,(EE,) is the top

Chern class of the rank g Hodge bundle E, on M,(S,3). The KKV
formula will be the starting point of our genus induction.

The class A, is a tautological class by the Grothendieck-Riemann—
Roch computation ([15]) but the formula is rather complicated. Instead
we use an alternative expression of A, in terms of double ramification
cycle, proven in [17]. We recall that the class (—1)7), is equal to
the double ramification cycle DR,(()) with the empty condition. By
[17, Theorem 1] the class DR,(0) can be written as a graph sum of
tautological classes without r-classes.

Proposition 28. The multiple cover formula holds in genus 0 and
genus 1 for all m > 1.



CURVES ON K3 SURFACES IN DIVISIBILITY TWO 35

Proof. When g = 0, 1, the tautological ring R*(M,,) is additively gen-
erated by boundary strata ([19, 37]). Thus, one can replace descendents
o € R*(M,,) by classes in H*(S). By the divisor equation and the di-
mension constraint, we can reduce to the case Fg,, (0) and Fy ,(70(p)).
The genus 0 case is covered by the full Yau—Zaslow formula [21, 36].
The genus 1 case follows from the genus 2 KKV formula. Using the

boundary expression of Ay on M5, we have

1 1
F2,m ()\Za @) = %Fl,m (@Z)l, AS) + @Fo,m ( ) AS) AS)
1 1,
= l—oFl,m(To(P)) + @DqFO,m (@) ;
where Ag C S xS is the diagonal class. Therefore, Fy , (To(p)) satisfies
Conjecture 15. dJ

In the argument below, we will use tautological relations on Mgm
which are recently obtained by r-spin relations. For convenience, we
summarize the result.

Proposition 29. ([23]) Let ¢ > 2 and n > 1. Consider tautological
classes on M, ,.

(i) (Topological Recursion Relations) Any monomial of 1)-classes
of degree at least g can be represented by a tautological class
supported on boundary strata without k-classes.

(ii) Any tautological class of degree g—1 can represented by a sum of
a linear combination of 19", ... , 971 and a tautological class
supported on boundary strata.

Proof. The proof of (i) follows from the proof of [23, Lemma 5.2] (see
also [12, page 3]). By [23, Proposition 3.1] (or [10, Theorem 1.1])
the degree g — 1 part R9~'(M,,,) is spanned by W97t 9t Since
relations used in the proof are all tautological, the boundary expression
is tautological and thus we obtain (ii). O

Together with the boundary expression for A;y; we obtain the fol-
lowing more general consequence of the KKV formula:

Proposition 30. Let m > 1 and ¢ > 1. Assume the multiple cover
formula Conjecture 15 holds for m and all descendents of genus < g.
Then Conjecture 15 holds for

Fom(7-1(P)
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Proof. Let § € Rl(Mg) be the boundary divisor corresponding to a
curve with nonseparating node. Denote two half edges as h and h'.
Recall that (—1)7), is equal to the double ramification cycle DR, (()
with the empty condition. We use this formula for genus g+ 1. By [17,

Theorem 1],
(_1)g+1)‘g+1 = DRg—l—l(@)
r—1
1 1 w?
=5 [ — m X:O (7(?/% + wh/))g} 7"15 + lower genus,
where [---],1 is the coefficient of the linear part of a polynomial in r.

The leading term is nonzero by Faulhaber’s formula.

By Proposition 29 (i) any ¢-monomial in RZ9(M,,) can be repre-
sented by a sum of tautological classes supported on boundary strata
without k classes. There is only one graph with a genus g vertex (with
a rational component carrying both markings). The graph is decorated
with a polynomial of degree g — 1 in - and k-classes. By Proposition
29 (ii) this tautological class can be represented by a sum of a multiple
of 197! and tautological classes supported on boundary strata. We find
that '?

g—1 1
(V1 + 1) =c 0¢—< + lower genus
g 0 °
in RI(M, ) for some ¢ € Q. Therefore, it suffices to prove that c is

nonzero. Recall that A\jA,_; vanishes on M,,, \ M, oty 80

/_ (% + wQ)g)\g)\gfl =cC /; 1/1‘?71)\9)\‘9,1 .
M972 Mg,l

The left hand side of the equation is nonzero by [17, Lemma 8], which
concludes the proof. O

We now consider the case of genus two. By the Getzler-Ionel van-
ishing on My, the dimension constraint, and the divisor equation any
descendent insertion reduces to the following three cases:

Fom(T1(P)) . Fom(70(p)?), Fom(mi(v)70(p)) with v € H*(S).

The first case is treated in Proposition 30 and follows from the KKV
formula in genus three and lower genus. The second case for m = 2
is treated as part of the proof of Theorem 1 in Section 6. We use the
double ramification relation (15) to prove the multiple cover formula

5The number under each vertex is the genus and legs correspond to markings.
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for the third case. The point class p will be obtained as the product of
F and W.

Proposition 31. For v € H?(S), the generating series Fa ., (71(7)70(p))
satisfies Conjecture 15.

Proof. We will use relations in As,,, 3 (Mz,n(s, B))
PQ?tA,m(F) =0

associated to the line bundle Og(F) on S. More precisely, we will
distinguish two cases v € U and v € U+ and set respectively

A=(a;,m—ay), A=(a;,az,m—a; —as).

Refined relations are then obtained by considering particular monomi-
als in the a;, as outlined in the previous section. The 7-class vanishes
in this case because (F, F) = 0 and, for the same reason, ¢? vanishes.
Define
X =Fym(ri(7)70(p)) -

The case v = F is treated first. As explained in Section 5.1, the
tautological relations are polynomial in a; and we may obtain a refined
relation by considering the [a]]-coefficient of

PZ?’,A,m(F)|a2:m—a1 :

We will only need to consider boundary strata which both:

e contribute to X and
e contribute to the [a}]-coefficient.

These two properties simplify the calculation significantly. By the
splitting property of the reduced class, a relevant boundary stratum
is a tree with one genus 2 vertex and contracted genus 0 components.
The integrals are given by the intersection product of the correspond-
ing insertions. In the case with only two markings, the only relevant

stratum is'®

h B !

The weight factor for this stratum is
w(h)w(h') m?

2 2
16The genus 2 vertex is represented by a filled node and other nodes represent
genus 0 vertices. Labeled half-edges correspond to markings.
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This stratum, therefore, cannot contribute to the [a}]-coefficient, since
1-classes on the genus 0 component vanish. It remains to determine
the contributions from the trivial graph

1 2

v

We will order the terms by the total degree deg(t) in the 1-classes.

(0) deg(v)) = 0. The relation we consider is of codimension three.
This case is therefore impossible by virtue of £ = 0.

(1) deg(¢) = 1. This case results in non-trivial terms, discussed
below.

(2) deg(v)) > 2. We may apply Proposition 29 (i) to reduce to the
descendent Fj (T1<p)). This descendent is covered by Propo-
sition 30.

Therefore, up to lower genus data, the [a}]-coefficient is

Gl — i,

Integrating
eV;(W)Pg,A,m(F”m:m—m

against the reduced class, we find (up to lower genus data)

where the second term is obtained by application of the divisor equa-
tion. We thus find that X is a linear combination of terms which
satisfy Conjecture 15. Switching the role of F' and W, we obtain the
same result for v = W.

Next, we consider v € U*. The following vanishing of intersection
products will be used frequently:

<77F>:07 <77W>:O, <’}/,6>:O

We use a similar argument as above, this time, however, we use three
markings and consider the [a3ay]-coefficient of'?

(16) evi(7) eV;(W)PZ?’,A,m(F)|a3:m—a1—a2 .

1TWe are grateful to the referee for pointing out a mistake in an earlier version
of the text. It has become clear that the choice of monomial, leading to non-
trivial relations, is a very subtle one. Symmetry in the a; and the insertions causes
cancellation in many cases. We plan to come back to this in future work.
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By the above vanishing of intersection products, the only possible trees
with non-trivial contribution are

1 2 2 1
h B h n

9

3 3
The weight factor for the right stratum is
w(h)yw(l) — (m — a)’

2 2
Since 1-classes on the genus 0 component vanish, the power of a; in

any monomial obtained from this stratum is bounded by two. The
contribution to the [a3ay]-coefficient is, therefore, zero.

Next, we explain the contributions from the left stratum. Note that
the left vertex is of genus 2 with two markings and we may apply
the same reasoning as in the discussion for v = F above. Here, the
deg(1) = 0 term &£, has trivial contribution due to (v, F') = 0. The
deg(v) = 1 terms ¥, &s, 11,3 have vanishing contribution by application
of the divisor equation for 7. Non-trivial contributions are obtained

only from
w1§2 ) w1£3 .
These two terms have contributions
m — ay)? m — ap)?
—7( 1 ) alay X, —7( 1 ) ataz X .

The [a3as]-coefficients, however, cancel due to a3 = m — a; — ay. It
remains to determine the contributions from the trivial graph:

1 2 3

N

As above, we order the terms by the total degree deg(v)) in the -
classes.

(0) deg(v)) = 0. The relation we consider is of codimension three.
Since £ = 0, the class & must appear. This term, however,
vanishes due to (v, F) = 0.

(1) deg()) = 1. This case results in non-trivial terms corresponding
to 1y or v3, discussed below. The choice of the monomial [a3as]
excludes the appearance of 1)y.

(2) deg()) = 2. This case results in non-trivial terms corresponding
to 1193 or 2, discussed below. The choice of the monomial
[a}as] excludes the appearance of 2.
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(3) deg(v)) = 3. As above, this case reduces to the descendent
Fom (7'1<p)) which is covered already.

The contributions from deg(v)) € {1, 2} are:

i&aés  — %afaﬂ?)':zm(Tl(V)To(P)To(F))
1

= §a%a2(m —a; —ay)mX
1
3283 — §a§a2a3F2,m(TO(’Y)TO(p)Tl(F))

1 51
P19s€s — §a%§a§a2FQ,m(7'1(7)7'0(P)7'1(1))
=alay(m —a; — ay)? X,
1,1

Vil > @t 5ofFan ()W) (F))
= 03(m — a1 — 0:)°X + (lower gems),
Ve = galaFu(n()n(k)n()
:%@mpﬂh—@fx,
vl = galasFan(n()n(V)r(F)
=0.

The third calculation uses the dilaton equation. All of the other calcula-
tions are obtained by application of the divisor equation. Additionally,
the fourth calculation involves Proposition 29. The only stratum with
a genus 2 vertex (i.e. with both markings on a contracted genus 0 com-
ponent) has vanishing contribution due to (v, F) = 0 and, therefore,
the relation reduces to lower genus descendents. The total contribution
to [a3ay] is
—lmX —2mX + §mX — 1mX = —§mX.
2 2 2 2

We find that X is a linear combination of terms which satisfy Conjec-

ture 15.
U
Remark 32. In fact, for v € U the above generating series vanishes

(and thus trivially satisfies the multiple cover formula). A proof in the
primitive case is given in [9, Lemma 4].
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6. PROOF OF THEOREM 1 AND 3

6.1. Proof of Theorem 1. The proof proceeds via induction on the
pair (g,n) ordered by the lexicographic order: (¢’,n’) < (g,n) if

e g <gor
e g =gandn <n.

Recall the dimension constraint of insertions:

g+n=deg(a) + Z deg(v;) .

We separate the proof into several steps.

Case 0. The genus 0 case is covered by Proposition 28. This serves as
the start for our induction.

Case 1. If all cohomology classes ~; satisfy deg(~;) < 1, then deg(«a) >
g and by the strong form of Getzler—Ionel vanishing [15, Proposition 2]
we have o = 1,/ with o/ € R*(0M,,,) and ¢: OM,,, — M,,. We are
thus reduced to lower (g,n).

Case 2. Assume deg(a) < g — 2 or equivalently, there exist at least
two descendents of the point class. We use the degeneration to the
normal cone of a smooth elliptic fiber:

SWSUEGPIXE).

We specialize the point class to the bubble P! x E. Let C' = C'UC” be
the splitting of a domain curve appearing in the degeneration formula
in Theorem 23. Namely, C” is the component on S and C” is the
component on P! x E. We argue that this splitting has non-trivial
contribution only for g(C") < g. If g(C") = g, this forces C” to be a
disconnected union of two rational curves. Since the degree of the curve
class along the divisor is (2B + hF, F') = 2, the two descendents of the
point class then force the cohomology weighted partition to be (1,1)?
on the bubble or, equivalently, (1,w)? for (S, F). This contribution
vanishes because there are no curves which can satisfy this condition
(if (1,w)? is represented by a generic point in E?, see Corollary 24).

Case 3. Assume deg(a) = g — 1 or equivalently, there exists only
one desecendent of the point class. We may thus assume v; = p. If
n =19 > 2, we can move 7,_1(p) to the bubble and the genus on S
drops.
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When n > 2, moving the point class to the bubble as in Case 2 may
not reduce the genus. In particular, moving 7y(p) to the bubble has
non-trivial contribution from rational curves on the bubble. On the
other hand, if @ > 1, moving 7,(p) to the bubble reduces the genus on
S because of the dimension constraint.

We use Buryak, Shadrin and Zvonkine’s description of the top tauto-
logical group R9~1(M,,,) [10]. For any o € R9~"Y(M,,,) the restriction
of o to My, is a linear combination of

(17) RO (Myy) = QUi g8~ . gty

and the boundary term is also tautological class in RI~1(0M,,). By
the divisor equation and subsequent use of (17), we can reduce to cases
for < (g,2). When g > 3, (17) has a different basis

RI™ (M) = Q{7 g ~2)

which is an easy consequence of the generalized top intersection for-
mula. Therefore, we may assume the descendent of the point class is
of the form 7,(p) with a > 1. Now, specializing this insertion to the
bubble P! x E reduces the genus and hence the same argument as in
Case 2 applies. The genus 2 case is covered by Proposition 31.

Relative vs. absolute. We reduced to invariants for (S, F') with genus
g¢" < g. As explained in the proof of [29, Lemma 31] (see also [28]),
the degeneration formula provides an upper triangular relation between
absolute and relative invariants for all pairs < (¢’,n’). Thus, our in-
duction applies.

6.2. Proof of Theorem 3. We argue by showing that each induc-
tion step in the proof of Theorem 1 is compatible with the holomor-
phic anomaly equation. Nontrivial step appears when the degenera-
tion formula is used. From the compatibility result Proposition 26, we
are reduced to proving the relative holomorphic anomaly equation for
lower genus relative generating series F;‘?}Q for (S, E') and relative gen-
erating series for (P! x E, E). The holomorphic anomaly equation for
(P! x E, E) is established in [33]. Because of the relative vs. absolute
correspondence [28], we are reduced to proving the holomorphic anom-
aly equation for Fy 5 in genus 0,1 and some genus 2 descendents. We
proved the multiple cover formula for these cases in Section 5, which
implies the holomorphic anomaly equation by Proposition 5.
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Remark 33. Parallel argument shows that we can always reduce the
proof for arbitrary descendent insertions to the case when the number
of point insertions is less than or equal to m — 1.

7. EXAMPLES

Example 34. We compute F; (7‘1(F )) via topological recursion in
genus one and illustrate Conjecture 15. Let [6g] € A'(M;,) be the
pushforward of the fundamental class under the gluing map

MQg — Ml,l .
Since .
Y1 = 54100] € AN(My,y),
we obtain
1 1
Fii(n(F)) = ﬂFo 1(10(F)mo(Ag)) = EFo,l(TO(F)To(F x W))
1
12 —D FO 1,
where Ag C S x S is the diagonal class. Analogously,
1 1
F172 (Tl(F)) = ﬁ FOQ(T()(F)T(](AS)) = g DqF(]’Q .
Using the multiple cover formula in genus zero
1023
Foo = ToF F 2
0,2 2Fo,1 + 3192 01(47)
we obtain
1 1023 _ 1
FLQ (Tl(F)) = quFQQ = 2T D FQ 1 1024 BQEDQFOJ

= 2T,Fy, (ﬁ<F>) + (20 =271 BoFua (ma(F))

in perfect agreement with Conjecture 15 using the formula for Ty o from
Lemma 12.

Example 35. We compute Fyo(70(p)?) via degeneration formula and
verify the multiple cover formula. The first two terms are computed
by the classical geometry of K3 surface in [32]. For simplicity we write
Fio = Fi2(70(p)). The relative invariants for (S, E) can be written in
terms of absolute invariants:

Lemma 36. (i) Fiea (0] (1,1)%) = 2Fg,

(i) F33(0 | (1,1), (1,w)) = F1 2 — 2F2D,C5,
(iii) Ff% (@ ‘ (27 1)) = éDqFOQ - 4C2F0,2-
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Proof. 1t is a standard computation of the relative vs. absolute corre-
spondence [28]. O

The relative invariants for (P! x E,F) can be computed by the
Gromov-Witten invariants of E.

Lemma 37. (i) G&3 (ro(p) | (1,1)) =1, Giyl 01(1,w)=
(ii) G (ro(p) | (1,w)) = DyCa, G (m0(p)? | (1, )) =2D 027
(iit) Gy (70(p)? | (L,w)) = (DyCa)?,
(iv) Gi%(70(p)? | (2,w)) = D20y, Gi%(m0(p)* | (1,w)?) = DICs.

Consider the degeneration where two point insertions move to the
bubble P! x E. By Theorem 23,

1
F272 (T0<p)2) = (FLQ — 2F0 2D 02)4D 02 + (quFO,Q — 402F072)2D(2]CQ

+ (2Fo2)5 (D302 +4(D,Cs)?)
= 36¢ + 8760q + 754992¢° + 36694512¢" + - - -

On the other hand, the primitive generating series

2
(ch2)

A(q)
is computed in [7] and one can apply the multiple cover formula to

obtain a candidate for Fs(7o(p)?). The first few terms of the two
generating series match. It is enough to conclude that the two gener-

F2,1(7'0<P)2) =

ating series are indeed equal because the space of quasimodular forms
with given weight is finite dimensional. However, it seems non-trivial
to match the above formula from the degeneration with the formula
provided by Conjecture 15.

APPENDIX A. A PROOF OF DEGENERATION FORMULA

For a self-contained exposition, we present a proof of the degenera-
tion formula which is parallel to the proof in [29, 30]. When m = 1,2,
a proof using symplectic geometry was presented in [24].

Perfect obstruction theory. For simplicity assume n = 0. General
cases easily follow from this case. Let e: S — A® be the total family of
the degeneration and

Mg(e, B) — Al
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be the moduli space of stable maps to the expanded target S. For the
relative profile u, the embedding

by MQ(S(% M) — MQ(G, B)
can be realized as a Cartier pseudo-divisor (L, s,).

Let Ec — Ly, . 5 be the perfect obstruction theory constructed in
[27]. Then the perfect obstruction theories Eg and E,, of M ,(Sp, 3) and

M 4(Sp, ) sit in exact triangles
LY = (5B — By
\% * (1]
L,—uE —E, — .

On M, (S, i1), the perfect obstruction theory splits as follows. Let E;
and E5 be the perfect obstruction theory of relative stable map spaces
M,(S/E, B1), and M (P! x E/E,$3), respectively. There exists an
exact triangle

Uw)
1
(18) DN, joxp)i = B BE, - B, 5
i=1
where (NX /g, )i is the pullback of the conormal bundle of the diag-
onal Ap C E x E along the i-th relative marking.

Reduced class. Let p: S — S x Al = S be the projection. By
pulling back the holomorphic symplectic form on S via p, one can
define a cosection of the obstruction sheaf of E.

Obsz,e.5 = O,
see [20, Section 5]. Dualizing the cosection gives a morphism
v: O[1] — E.

Let EX* be the cone of v which gives the reduced class on M (e, 3).
Similarly we can construct

Yrel - 0[1] — El
for the moduli space of relative stable maps M,(S/E, ).

Degeneration formula for reduced class. Restricting v to M,(Sy, 3)
and M (S, i), we get

Yo 0[1] — LSEE — EO
Yu: O[] = 1, Ec = E,
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where the compositions induce reduced classes. The exact triangles
LY — et - pred By
IR o o

still hold.

Lemma 38. We have an exact triangle

1
NX,pixm — B B Ey — B N

on M, (S, 1) compatible with the structure maps to the cotangent
complex.

Proof. Consider the diagram of complexes
O[1B0 —== 0[]

’YrclBHO T

~ ~

z g
@i(:ul)(NXE/ExE>i —— E/BE, —— E,

~ ~

l re re
@i(:ul)(NXE/ExE)i —— B HE, —— Eud

where the middle horizontal morphisms are the exact triangle from
(18). The square on the top commutes because the cosections for S
and (S, E) are both coming from the holomorphic symplectic form on
S. The vertical morphisms are exact triangles and hence induces a map
between cones. O

Now Theorem 23 is a direct consequence of Lemma 38.
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