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CURVES ON K3 SURFACES IN DIVISIBILITY TWO

YOUNGHAN BAE AND TIM-HENRIK BUELLES

Abstract. We prove a conjecture of Maulik, Pandharipande, and
Thomas expressing the Gromov–Witten invariants of K3 surfaces
for divisibility two curve classes in all genus in terms of weakly
holomorphic quasimodular forms of level two. Then, we establish
the holomorphic anomaly equation in divisibility two in all genus.
Our approach involves a refined boundary induction, relying on
the top tautological group of the moduli space of smooth curves,
together with a degeneration formula for the reduced virtual fun-
damental class with imprimitive curve classes. We use the double
ramification relations with target variety as a new tool to prove
the initial condition. The relationship between the holomorphic
anomaly equation for higher divisibility and the conjectural multi-
ple cover formula of Oberdieck and Pandharipande is discussed in
detail and illustrated with several examples.
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0. Introduction

Let S be a complex nonsingular projective K3 surface and β ∈

H2(S,Z) an effective curve class. Gromov–Witten invariants of S are

defined via intersection theory on the moduli spaceM g,n(S, β) of stable

maps from n-pointed genus g curves to S. This moduli space comes

with a virtual fundamental class. However, the virtual class vanishes

for β 6= 0 so, instead, we use the reduced class1

[M g,n(S, β)]
red ∈ Ag+n

(
M g,n(S, β),Q

)
.

For integers ai ≥ 0 and cohomology classes γi ∈ H
∗(S,Q) we define

〈
τa1(γ1) . . . τan(γn)

〉S
g,β

=

∫

[Mg,n(S,β)]red

n∏

i=1

ψai
i ∪ ev∗i (γi) ,

where evi : M g,n(S, β)→ S is the evaluation at i-th marking and ψi is

the cotangent class at the i-th marking. By the deformation invariance

of the reduced class, the invariant only depends on the norm 〈β, β〉 and

the divisibility of the curve class β.

0.1. Quasimodularity. Gromov–Witten invariants of K3 surfaces for

primitive curve classes are well-understood since the seminal paper by

Maulik, Pandharipande, and Thomas [29]. The invariants are coeffi-

cients of weakly holomorphic2 quasimodular forms with pole of order

at most one [29, Theorem 4]. For imprimitive curve classes, the quasi-

modularity is conjectured with the level structure [29, Section 7.5].

The quasimodularity can be stated in a precise sense via elliptic K3

surfaces. Let

π : S → P1

be an elliptic K3 surface with a section and denote by B,F ∈ H2(S,Z)

the class of the section resp. a fiber. For any m ≥ 1 one defines the

descendent potential

Fg,m

(
τa1(γ1) . . . τan(γn)

)
=
∑

h≥0

〈
τa1(γ1) . . . τan(γn)

〉S
g,mB+hF

qh−m .

Note that this generating series involves curve classes mB + hF of

different divisibilities, bounded by m.

1We will identify this class with its image under the cycle class map A∗ → H2∗.
2Weakly holomorphic means holomorphic on the upper half plane with possible

pole at the cusp i∞.
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It is convenient to use the following homogenized insertions which

will lead to quasimodular forms of pure weight. Let 1 ∈ H0(S) and

p ∈ H4(S) be the identity resp. the point class. Denote

W = B + F ∈ H2(S)

and let

U = Q〈F,W 〉 ⊂ H2(S)

be the hyperbolic plane in H2(S) and let U⊥ ⊂ H2(S) be its orthogonal

complement with respect to the intersection form. We only consider

second cohomology classes which are pure with respect to the decom-

position

H2(S,Q) ∼= Q
〈
F
〉
⊕Q

〈
W
〉
⊕ U⊥ .

Following [8, Section 4.6], define a modified degree function deg by

deg(γ) =





2 if γ = W or p ,
1 if γ ∈ U⊥ ,
0 if γ = F or 1 .

For m ≥ 1, consider the Hecke congruence subgroup of level m

Γ0(m) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod m

}

and let QMod(m) be the space of quasimodular forms for the congru-

ence subgroup Γ0(m) ⊂ SL2(Z). Let ∆(q) be the modular discriminant

∆(q) = q
∏

n≥1

(1− qn)24 .

Our first main result proves level two quasimodularity of Fg,2, previ-

ously conjectured by Maulik, Pandharipande, and Thomas [29, Section

7.5].

Theorem 1. Let γ1, . . . , γn ∈ H
∗(S) be homogeneous on the modified

degree function deg. Then Fg,2 is the Fourier expansion of a quasimod-

ular form

Fg,2

(
τa1(γ1) . . . τan(γn)

)
∈

1

∆(q)2
QMod(2)

of weight 2g − 12 +
∑

i deg(γi) with pole at q = 0 of order at most 2.

0.2. Holomorphic anomaly equation. In the physics literature, the

(conjectural) holomorphic anomaly equation [4, 5] predicts hidden struc-

tures of the Gromov–Witten partition function associated to Calabi–

Yau varieties. For the past few years, there has been an extensive

work to prove the holomorphic anomaly equation in many cases: local
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P2 [26], the quintic threefold [11, 16], K3 surface with primitive curve

classes [33], elliptic fibration [34] and P2 relative to a smooth cubic [6].

Every quasimodular form for Γ0(m) can be written uniquely as a

polynomial in C2 with coefficients which are modular forms for Γ0(m)

[18, Proposition 1]. Here,

C2(q) = −
1

24
E2(q)

is the renormalized second Eisenstein series. Assuming quasimodu-

larity, the holomorphic anomaly equation fixes the non-holomorphic

parameter of the Gromov–Witten partition function of K3 surfaces in

terms of lower weight partition functions: it computes the derivative

of Fg,m with respect to the C2 variable. See [33] for the proof of holo-

morphic anomaly equation for K3 surfaces with primitive curve classes

and [34] for the holomorphic anomaly equation associated to elliptic

fibrations.

Define an endomorphism [33, Section 0.6]

σ : H∗(S2)→ H∗(S2)

by the following assignments:

σ(γ ⊠ γ′) = 0

if γ or γ′ ∈ H0(S)⊕Q
〈
F
〉
⊕H4(S), and for α, α′ ∈ U⊥,

σ(W ⊠W ) = ∆U⊥, σ(W ⊠ α) = −α⊠ F,

σ(α⊠W ) = −F ⊠ α, σ(α, α′) = 〈α, α′〉F ⊠ F ,

where ∆U⊥ denotes the diagonal class for the intersection pairing on U⊥.

We will view σ as the exterior product σ1 ⊠ σ2 via Künneth decompo-

sition.

Recall the virtual fundamental class for trivial curve classes which

will play a role for the holomorphic anomaly equation. For β = 0 we

have an isomorphism

M g,n(S, 0) ∼=M g,n × S

and the virtual class is given by

[Mg,n(S, 0)]
vir =





[M 0,n × S] if g = 0 ,

c2(S) ∩ [M 1,n × S] if g = 1 ,

0 if g ≥ 2 .
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Also, consider the pullback under the morphism π : S → P1 of the

diagonal class of P1

∆P1 = 1⊠ F + F ⊠ 1 =
2∑

i=1

δi ⊠ δ
∨
i .

Define the generating series3

Hg,m

(
α; γ1, . . . , γn

)
(1)

= Fg−1,m

(
α; γ1, . . . , γn,∆P1

)

+ 2
∑

g=g1+g2
{1,...,n}=I1⊔I2

i∈{1,2}

Fg1,m

(
αI1 ; γI1, δi

)
Fvir
g2

(
αI2; γI2, δ

∨
i

)

− 2
n∑

i=1

Fg,m

(
αψi; γ1, . . . , γi−1, π

∗π∗γi, γi+1, . . . , γn
)

+
20

m

n∑

i=1

〈γi, F 〉Fg,m

(
α; γ1, . . . , γi−1, F, γi+1, . . . , γn

)

−
2

m

∑

i<j

Fg,m

(
α; γ1, . . . , σ1(γi, γj)︸ ︷︷ ︸

ith

, . . . , σ2(γi, γj)︸ ︷︷ ︸
jth

, . . . , γn
)
,

where Fvir denotes the generating series for virtual fundamental class.

In most cases this term vanishes. The equation takes almost the same

form for arbitrary m, only the last two terms acquire a factor of 1
m
.

The appearance of these factors is explained in Section 3, see also

Example 22. We conjecture that the holomorphic anomaly equation

has the following form:

Conjecture 2.

(2)
d

dC2
Fg,m

(
α; γ1, . . . , γn

)
= Hg,m

(
α; γ1, . . . , γn

)
.

For primitive curve classes, the holomorphic anomaly equation is

proven in [33]. In higher divisiblity, it is precisely equation (2) that

would be implied by the conjectural multiple cover formula for im-

primitve Gromow–Witten invariants of K3 surfaces. We explain this

in the following section. We prove Conjecture 2 unconditionally when

m = 2:

3Here, instead of descendent insertions we use a tautological class α ∈ R∗(Mg,n),
see the comment in Section 2.2
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Theorem 3. For any g ≥ 0,

(3)
d

dC2
Fg,2

(
α; γ1, . . . , γn

)
= Hg,2

(
α; γ1, . . . , γn

)
.

0.3. Multiple cover formula. Motivated by the Katz–Klemm–Vafa

(KKV) formula, Oberdieck and Pandharipande conjectured a formula

which computes imprimitive invariants from the primitive invariants:

Conjecture 4. ([32, Conjecture C2]) For a primitive curve class β,
〈
τa1(γ1) . . . τan(γn)

〉
g,mβ

(4)

=
∑

d|m

d2g−3+deg
〈
τa1(ϕd,m(γ1)) . . . τan(ϕd,m(γn))

〉
g,ϕd,m(m

d
β) .

The invariants on the right hand side are with respect to primitive

curve classes4. Assuming this formula, we can deduce the holomorphic

anomaly equation:

Proposition 5. Let m ≥ 1. Assume the multiple cover formula (4)

holds for all curve classes of divisibility d | m and all descendent inser-

tions. Then the holomorphic anomaly equation (2) holds.

Given this proposition, it seems a natural strategy to prove the mul-

tiple cover formula in divisibility two and deduce, as a consequence,

the holomorphic anomaly equation. Indeed, our method does follow

this logic for m = 2 and for low genus: we verify the multiple cover

formula for g ≤ 2, see Example 35. For higher genus, however, our

method does not seem suitable to achieve this. Instead, our proof of

Theorem 1 provides an algorithm, based on the degeneration to the

normal cone of a smooth elliptic fiber E ⊂ S, to reduce divisibility

two invariants to low genus invariants for which the multiple cover for-

mula is known5. The degeneration formula intertwines invariants of S

with invariants of P1 × E in a non-trivial way. This phenomenon is

illustrated in Example 35 for the genus 2 invariants
〈
τ0(p)

2
〉
2,2β

.

4Section 2 contains all relevant definitions.
5The genus 0 and genus 1 cases are proved by Lee and Leung in [24, 25]. Their

proof involves a degeneration formula in symplectic geometry which is not possible
in algebraic geometry. We present an algebro-geometric approach using the KKV
formula.
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0.4. Hecke operator. In Section 2 we apply Conjecture 4 to an ellip-

tic K3 surface to deduce a conjectural multiple cover formula for the

descendent potentials Fg,m. The multiple cover formula for any divis-

ibility m is then simply a Hecke operator of the wrong weight acting

on the primitive potential Fg,1. Indeed, the weight of Fg,1 (and conjec-

turally of Fg,m) is 2g − 12 + deg, whereas the Hecke operator has the

weight of a descendent potential attached to elliptic curves, namely

2g − 2 + deg. This operator can be expressed in terms of Hecke op-

erators (of the correct weight) and translation q 7→ qd. Together with

the holomorphic anomaly equation for primitive curve classes [33] this

naturally leads to the above conjecture for the holomorphic anomaly

equation for higher divisibility.

0.5. Plan of the paper. We prove the quasimodularity and the holo-

morphic anomaly equation by induction on the genus and the number

of markings. In Section 1, we discuss Hecke theory for weakly holomor-

phic quasimodular forms. This leads to a natural formulation of the

multiple cover formula in Section 2 and the imprimitive holomorphic

anomaly equation in Section 3. In Section 4, compatibility of the holo-

morphic anomaly equation with the degeneration formula is presented.

In Section 5, we derive the multiple cover formula, which implies the

holomorphic anomaly equation, for genus 0, genus 1 and some genus 2

decendent invariants from the KKV formula. The genus 2 computa-

tion relies on double ramification relations with target variety. This

result serves as the initial condition for our induction. In Section 6, we

use previous results to prove Theorem 1 and 3. The property of the

top tautological group Rg−1(Mg,n) reduces higher genus cases to lower

genus invariants discussed in Section 5.
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1. Quasimodular forms and Hecke operators

We recall basic properties of quasimodular forms and Hecke opera-

tors, see [22, 39], in particular [22, pp. 156–163] and [22, Ch. 3, Sec-

tion 3]. The Hecke theory for weakly holomorphic quasimodular forms

however seems to be less well documented. We thus also include some

proofs.

The following operators will play a central role. For any Laurent

series

(5) f(q) =
∞∑

n=−∞

anq
n

and d ∈ Z>0 we define

Dqf = q
d

dq
f , Bdf =

∞∑

n=−∞

anq
dn , Udf =

∞∑

n=−∞

adnq
n .

We will apply these operators to the Laurent series associated to

certain modular functions. For this we briefly review the definition of

modular forms.

1.1. Quasimodular forms. Let H = {τ ∈ C | Im(τ) > 0} be the

upper half-plane. The group GL+
2 (R) of real 2×2-matrices with positive

determinant acts on H via

Aτ =
aτ + b

cτ + d
, A =

(
a b
c d

)
∈ GL+

2 (R) .

Let f : H→ C be a function and let

q = e2πiτ , y = Im(τ) .

For k ∈ Z define the k-th slash operator

(f |kA)(τ) = det(A)k/2(cτ + d)−kf(Aτ) .

Definition 6. A quasimodular form of weight k for SL2(Z) is a holo-

morphic function f : H→ C admitting a Fourier expansion

(6) f(q) =
∞∑

n=0

anq
n , |q| < 1 ,
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such that there exist p ≥ 0 and holomorphic functions fr, r = 0, . . . , p

satisfying the following conditions:

(i) the (non-holomorphic) function f̂ =
∑p

r=0 fry
−r satisfies the

transformation law

f̂ |kγ = f̂ for all γ ∈ SL2(Z) ,

(ii) f = f0,

(iii) each fr has an expansion of the form (6).

If p = 0 then f is called a modular form. We denote the space of

modular resp. quasimodular forms by Mod and QMod.

Remark 7. If f̂ =
∑p

r=0 fry
−r as above with fp 6= 0, then each fr is a

quasimodular form of weight k−2r, see [39, Proposition 20]. Moreover,

the last one, i.e. fp is in fact modular (of weight k−2p). The following

structural results are well-known [39, Proposition 4, Proposition 20]

Mod = C[C4, C6] , QMod = C[C2, C4, C6] ,

where

C2i(q) = −
B2i

2i · (2i)!
E2i(q)

is the renormalized 2i-th Eisenstein series. The notion (i) defines the

space AHM of almost holomorphic modular forms and the assignment

f̂ 7→ f is an isomorphism

AHM→ QMod .

Under this map, differentiation with respect to 1
8πy

corresponds to dif-

ferentiation with respect to C2.

The modular functions considered in this paper will usually have

poles at the cusp τ = i∞ corresponding to q = 0. We will refer to

these functions as weakly holomorphic with pole of specified order. We

want to clarify this terminology in the context of quasimodular forms.

Definition 8. A function f is said to be weakly holomorphic quasi-

modular with pole of order at most m ≥ 0, if f satisfies the conditions

in Definition 6 except that each fr is allowed to have a pole at the cusp

i∞ of order at most m. If p = 0 then f is called a weakly holomorphic

modular form with pole of order at most m.

By parallel arguments as in [39, Proposition 20], the assertions in Re-

mark 7 hold analogously for weakly holomorphic quasimodular forms.

In particular, fp is weakly holomorphic modular with pole of order at



10 YOUNGHAN BAE AND TIM-HENRIK BUELLES

most m. The space of weakly holomorphic modular forms is generated

by 1
∆

over Mod, where

∆(q) = q
∏

n≥1

(1− qn)24

is the modular discriminant.6 As a consequence,

fp ∈
1

∆m
Mod

and since fp is of weight k − 2p (and there are no non-zero modular

forms of negative weight) we have k ≥ 2p− 12m.

For quasimodular forms we include the following observation.

Lemma 9. The space of weakly holomorphic quasimodular forms with

pole of order at most m is given by

1

∆m
QMod .

Proof. Let f be a weakly holomorphic form with pole of order at mostm

and weight k and let

f̂ =

p∑

r=0

fry
−r ,

with f = f0. Multiplying by ∆m we have for all γ ∈ SL2(Z)

(∆mf̂)|k+12mγ = (∆m)|12mγ · (f̂)|kγ = ∆mf̂ .

Since each ∆mfr is holomorphic at i∞ this proves

f ∈
1

∆m
QMod .

Analogous argument shows that the quotient of any quasimodular form

by ∆m defines a weakly holomorphic quasimodular form with pole of

order at most m. �

1.2. Hecke operators. Let m ∈ N and consider the set of integral

matrices of determinant m

Hm =
{(

a b
c d

)
| a, b, c, d ∈ Z , ad− bc = m

}
.

The modular group SL2(Z) acts on Hm by left multiplication. The

classical Hecke operators Tm acting on modular forms f of weight k

6See [14] where the authors examine an explicit basis of the space of weakly
holomorphic modular forms.
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are defined by [39, Section 4.1]

Tmf = mk/2−1
∑

γ∈SL2(Z)\Hm

f |kγ .

This definition is equivalent to [22, Ch. 3, Proposition 38]

(7) Tm =
∑

ad=m

ak−1BaUd .

The action of (7) naturally extends to the action of the q-expansion

of weakly holomorphic quasimodular forms. We prove that the action

again defines a weakly holomorphic quasimodular form. For simplicity

(we will only use this case) we restrict to the case when f has a pole

of order at most one.

Lemma 10. Let f ∈ 1
∆
QMod be of weight k. Then Tmf is a weakly

holomorphic quasimodular form of weight k with pole of order at

most m, i.e.

Tmf ∈
1

∆m
QMod .

Proof. In [31] it is shown that Tm defines a map QMod → QMod pre-

serving the weight. We briefly recall the key arguments for f ∈ QMod.

The definition of quasimodular forms is equivalent to the condition7

(f |kγ)(τ) =

p∑

r=0

(
c

cτ + d

)r

fr(τ) for all γ =

(
a b
c d

)
∈ SL2(Z) ,

where fr are as in Definition 6. Defining a modification of the slash

operator for quasimodular forms8

(f ||kA)(τ) =

p∑

r=0

(−c)r(cτ + d)r(fr|kA)(τ) for A =

(
a b
c d

)
∈ GL+

2 (R) ,

then the quasimodularity is equivalent to

f ||kγ = f for all γ ∈ SL2(Z) .

This leads to a parallel treatment of Hecke operators as in the classical

context of modular forms. By [31, Proposition 2] we have

f ||k(γA) = f ||kA , for all γ ∈ SL2(Z) , A ∈ GL+
2 (R)

and we define

Tmf = mk/2−1
∑

A∈SL2(Z)\Hm

f ||kA .

7This notion is called ‘differential modular form’ in [31]. As pointed out in [39,
Section 5.3], this notion is equivalent to be a quasimodular form.

8This definition differs from [31, Equation 12] by a factor m−p, where p is the
depth of f . Our definition of the Hecke operator differs by the same factor.
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This definition is then independent of a choice of representatives of

SL2(Z) \Hm. To conclude that Tmf is a quasimodular form, we would

like to argue that it is invariant under (−)||kγ for all γ ∈ SL2(Z). This

statement, however, is not sensible at the moment9 because the defini-

tion of (−)||kγ relies on the existence of associated functions fr. This

technicality is resolved in [31, Section 2.4, 2.5] by considering a certain

period domain P and identifying quasimodular forms as holomorphic

functions on P, which are left SL2(Z)-invariant and satisfy a transfor-

mation property for a right action of the subgroup of upper triangular

matrices. The domain P is contained in GL2(C) and it contains the

upper-half plane H. The actions are given by left resp. right multiplica-

tion. The argument carries over to weakly holomorphic quasimodular

forms without change.

A particular set of representatives for SL2(Z) \Hm is given by
{
γb =

(
a b
0 d

)
| a, d ∈ N, ad = m, 0 ≤ b < d

}
.

Note that (−)||kγb = (−)|kγb because the terms for r > 0 vanish. Since

Udf(τ) =
1

d

∑

0≤b<d

f

(
τ + b

d

)
,

we thus recover equation (7):

Tmf(τ) = mk/2−1
∑

ad=m
0≤b<d

d−kmk/2f

(
aτ + b

d

)

=
∑

ad=m

ak−1BaUdf(τ) .

For weakly holomorphic quasimodular forms f ∈ 1
∆
QMod we follow

the same proof. The difference here is that the functions fr are allowed

to have simple poles at i∞. The slash operator (−)||k however may

turn a simple pole into a pole of higher order. For (−)||kγb this or-

der is bounded by m. As a consequence, Tmf is weakly holomorphic

quasimodular with pole of order at most m. �

For our study of the multiple cover formula in Section 2 we will

require a more flexible notion, where the exponent is not necessarily

related to the weight. The action of this operator will preserve the

weight of weakly holomorphic quasimodular forms, it will, however,

introduce poles and level structure.

9We are grateful to the referee for pointing out this subtle detail.
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Definition 11. For ℓ ∈ Z, we define

Tm,ℓ =
∑

ad=m

aℓ−1BaUd .

The operator Tm,ℓ is simply the m-th Hecke operator of weight ℓ,

which we let act on functions of weight k. By Möbius inversion we

may rewrite each of them in terms of the other (see [1, Section 2.7]).

For this, let µ be the Möbius function.

Lemma 12. The action of Tm,ℓ on weakly holomorphic quasimodular

forms of weight k is given by

Tm,ℓ =
∑

ad=m

ck,ℓ(a)BaTd ,

where

ck,ℓ(a) =
∑

r|a

rℓ−1µ
(a
r

)(a
r

)k−1

.

Proof. The formula for ck,ℓ above can be rewritten as

ck,ℓ = Idℓ−1 ⋆ (µ · Idk−1) ,

where Idℓ−1(n) = nℓ−1 is the (ℓ − 1)-th power function and ⋆ denotes

Dirichlet convolution, i.e. for functions g, h we have

(g ⋆ h)(m) =
∑

ad=m

g(a)h(d) .

Note also that B is multiplicative with respect to composition, i.e. for

e | a we have Ba = BeB a
e
and therefore

Tm,ℓ =
∑

ad=m

aℓ−1BaUd

=
∑

ad=m

(
Idℓ−1 ⋆ (µ · Idk−1) ⋆ Idk−1

)
(a)BaUd

=
∑

ad=m


∑

e|a

ck,ℓ(e)
(a
e

)k−1


BaUd

=
∑

uw=m

ck,ℓ(u)Bu


∑

v|w

vk−1BvUw
v




=
∑

uw=m

ck,ℓ(u)BuTw .

�
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As a consequence we obtain the following result. Here, we letMod(m)

and QMod(m) be the space of modular resp. quasimodular forms for

the congruence subgroup Γ0(m) ⊂ SL2(Z), see the introduction.

Proposition 13. Let f ∈ 1
∆
QMod be of weight k, then Tm,ℓf is a

weakly holomorphic quasimodular of weight k with pole of order at

most m for the congruence subgroup Γ0(m) ⊂ SL2(Z)

Tm,ℓf ∈
1

∆m
QMod(m) .

Proof. We use the formula in Lemma 12 and treat each summand sep-

arately. By Lemma 9 each Tdf satisfies

Tdf ∈
1

∆d
QMod .

The action of Ba raises q 7→ qa, or equivalently τ 7→ aτ , so it maps

QMod to QMod(a), see [22, Ch. 3, Proposition 17]. Therefore

BaTdf ∈
1

∆(qa)d
QMod(a) .

Finally, the weakly holomorphic modular form for Γ0(a) defined by

∆(q)a

∆(qa)

is in fact holomorphic at i∞, i.e. contained in Mod(a). Hence the same

is true for its d-th power and we find

BaTdf ∈
1

∆m
QMod(a) .

which concludes the proof since QMod(a) ⊂ QMod(m). �

For later reference, we list the following basic commutator relations

between the above operators acting on weakly holomorphic quasimod-

ular forms f of weight k. Recall, that the algebra QMod(m) is freely

generated by the Eisenstein series C2 over the algebra Mod(m) of mod-

ular forms. Formal differentiation with respect to C2 is therefore well-

defined.

Lemma 14. Let d, e ∈ N and ℓ ∈ Z, then

(i) BdBe = Bde = BeBd ,

(ii) UdUe = Ude = UeUd ,

(iii) DqBd = dBdDq , UdDq = dDqUd ,

(iv) Tm,ℓ+2Dq = mDqTm,ℓ ,
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(v) d
dC2

Tm,ℓ+2 = mTm,ℓ
d

dC2
,

(vi) [ d
dC2

,Dq] = −2k.

Proof. The proof for (i)-(iv) follows directly from the definition. For (v)

one may use that under the isomorphism f̂ 7→ f the differentiation d
dC2

corresponds to differentiation with respect to 1
8πy

, see Remark 7. The

statement (v) is then checked as an identity of Laurent series in q with

polynomial coefficients in y−1. The commutator relation (vi) is well-

known, see e.g. [39, Section 5.3].

�

2. Multiple cover formula

This section contains a discussion of the multiple cover formula. We

start by recalling the conjecture formulated in [32]. Then, we study

the conjecture for the descendent potentials associated to elliptic K3

surfaces. The result is expressed in terms of Hecke operators. The

discussion naturally leads to a candidate for the holomorphic anomaly

equation in higher divisibility. We conclude with a proof of the multiple

cover formula in fiber direction.

2.1. Multiple cover formula. Let S be a nonsingular projective K3

surface, β ∈ H2(S,Z) be a primitive effective curve class, m ∈ N and

d | m be a divisor of m. The proposed formula by Oberdieck and

Pandharipande involves a choice of a real isometry

ϕd,m :
(
H2(S,R) , 〈 , 〉

)
→
(
H2(Sd,R) , 〈 , 〉

)

between two K3 surfaces such that

ϕd,m

(m
d
β
)
∈ H2(Sd,Z)

is a primitive effective curve class10. In [9] the second author proved

that such an isometry can always be found and Gromov–Witten invari-

ants are in fact independent of the choice of isometry.

Consider integers ai ∈ N, cohomology classes γi ∈ H
∗(S,Q) and let

deg =
∑

deg(γi). Then, the conjectured multiple cover formula [32,

10We view curve classes also as cohomology classes under the natural isomor-
phism H2(S,Z) ∼= H2(S,Z).
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Conjecture C2], identical to Conjecture 4 in Section 0, is

〈
τa1(γ1) . . . τan(γn)

〉
g,mβ

=
∑

d|m

d2g−3+deg
〈
τa1(ϕd,m(γ1)) . . . τan(ϕd,m(γn))

〉
g,ϕd,m(m

d
β) .

Let S be an elliptic K3 surface with a section11. The full (reduced)

Gromov–Witten theory of K3 surfaces is captured by S with curve

class mB + hF via standard deformation arguments using the Torelli

theorem. In fact, the multiple cover conjecture can be captured entirely

via S as well: we may choose the same Sd = S for any d dividing m

and h. For l ∈ Q∗ we define

φl : H
∗(S,Q)→ H∗(S,Q)

acting on U = Q〈F,W 〉 as

φl(F ) =
1

l
F , φl(W ) = lW ,

and trivially on the orthogonal complement U⊥. For d | m and d | h

we may choose ϕd,m as φ d
m
:

φ d
m

(
m

d
B +

h

d
F

)
= B +

(
m(h−m)

d2
+ 1

)
F in H2(S,Z)

which is a primitive curve class.

Altering the curve class via the isometry φ therefore results in ad-

ditional factors of d
m

or m
d
while keeping the descendent insertions un-

changed. This explains the change in exponents

2g − 3 + deg←→ 2g − 3 + deg

and the factor mdeg−deg in the multiple cover formula below for the

descendent potential. We use the operator Tm,ℓ introduced in Defi-

nition 11. As pointed out in Section 0.4, this is the m-th Hecke op-

erator for functions of weight ℓ, which we let act on Fg,1 (which has

weight 2g − 12 + deg). Before stating the conjecture, we want to dis-

cuss the role of tautological classes and compatibility with respect to

restriction to boundary strata.

11Notations here are as in Section 0. In particular, we use the modified degree
function deg.
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2.2. Compatibility I. We will find it convenient to use pullbacks of

tautological classes from M g,n instead of ψ-classes on M g,n(S, β). For

2g − 2 + n > 0, let

R∗(Mg,n) ⊆ A∗(M g,n)

be the tautological ring ofMg,n. For a tautological class α ∈ R∗(M g,n),

we consider the invariants

〈
α; γ1, . . . , γn

〉
=

∫

[Mg,n(S,β)]red
π∗α ∪

n∏

i=1

ev∗i (γi) ,

where π : M g,n(S, β)→M g,n is the stabilization morphism. We write

Fg,m

(
α; γ1, . . . , γn

)
=
∑

h≥0

〈
α; γ1, . . . , γn

〉
g,mB+hF

qh−m

for the generating series in divisibility m. By the usual trading of

cotangent line classes, these generating series are related to the ones

defined via cotangent classes on M g,n(S, β). Any monomial in ψ- and

κ-classes can be written, after adding markings, as a product of ψ-

classes. This procedure leaves deg and deg unchanged. Before stating

the multiple cover formula below, we explain the compatibility with

respect to restriction to boundary strata in M g,n(S, β).

A crucial point for this compatibility is the splitting behavior of the

reduced class. Consider the pullback of the boundary divisor

M g−1,n+2 →M g,n

under the stabilization morphism π. Let α be the pushforward of a

tautological class (we will omit pushforwards in the notation below).

By the restriction property of the reduced class, we obtain

Fg,m

(
α; γ

)
= Fg−1,m

(
α; γ∆S

)
.

Then, the compatibility follows from two facts. Firstly, for the diagonal

class ∆S we have (
deg−deg

)
(∆S) = 0 ,

thus the factor mdeg−deg in Conjecture 15 below remains unchanged.

Secondly, we have deg(∆S) = 2 which precisely offsets the genus re-

duction from g to g − 1 in the formula

ℓ = 2g − 2 + deg .

Next, consider the pullback of the boundary divisor

M g1,n1+1 ×M g2,n2+1 →M g,n
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under the stabilization morphism π. Let

α = α1 ⊠ α2 , {1, . . . , n} = I1 ∪ I2 , γ = γ1 ⊠ γ2

be the pushforward of the product of tautological classes, the split-

ting of markings, and the splitting of the insertions respectively. The

Künneth decomposition of the class of the diagonal is denoted by

[∆S] =
∑

j

∆j ⊠∆j .

The splitting property implies that

Fg,m

(
α; γ

)
=

∑

m1+m2=m

∑

j

(
Fg1,m1

(
α1; γI1∆j

)
· Fvir

g2,m2

(
α1; γI1∆

j
)

+ Fvir
g1,m1

(
α1; γI1∆j

)
· Fg2,m2

(
α1; γI1∆

j
)
)
.

The virtual class for non-zero curve classes vanishes, thus the contri-

bution Fvir is a number. As a consequence, no non-trivial products of

generating series appear when we use boundary expressions. By similar

consideration as above, using the deg and deg for the diagonal class,

we find that the multiple cover formula is compatible with respect to

this boundary divisor as well. We can now state the multiple cover

formula for the generating series with tautological classes:

Conjecture 15. For deg-homogeneous γi ∈ H
∗(S,Q),

Fg,m

(
α; γ1, . . . , γn

)
= mdeg−deg Tm,ℓ

(
Fg,1

(
α; γ1, . . . , γn

))
,

where deg =
∑

deg(γi), deg =
∑

deg(γi) and ℓ = 2g − 2 + deg.

Based on the discussion above, the same formula is conjectured for

the potential

Fg,m

(
τa1(γ1) . . . τan(γn)

)
.

We now show that our presentation of the multiple cover formula is

equivalent to the original formula.

Lemma 16. Conjecture 4 for all d | m is equivalent to Conjecture 15

for m.

Proof. By the deformation invariance of the reduced class, the Gromov–

Witten invariants for arbitrary curve classes are fully captured by an

elliptic K3 surface with a section. The primitive curve classes are B +

hF ∈ H2(S,Z). Taking the coefficient of qmh−m in Conjecture 15 gives
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a multiple cover formula for the curve class mB+mhF which matches

the formula in Conjecture 4. It is the other implication which we have

to justify.

The generating series Fg,m involves curve classesmB+hF of different

divisibilities bounded by m. We apply Conjecture 4 to each invariant

and use the isometries φ. Note that each appearance of γi = F in-

troduces a factor of m
d
, while each appearance of γi = W gives d

m
.

Moreover,

|{i | γi = F}| − |{i | γi =W}| = deg−deg ,

and therefore

Fg,m

(
α; γ1, . . . , γn

)
=
∑

h≥0

〈
α; γ1, . . . , γn

〉
g,mB+hF

qh−m

=
∑

h≥0

∑

d|m
d|h

d2g−3+deg
(m
d

)deg−deg 〈
α; γ1, . . . , γn

〉
g,B+(m(h−m)

d2
+1)F q

h−m

= mdeg−deg
∑

d|m

d2g−3+deg

(
∑

h≥0

〈
α; γ1, . . . , γn

〉
g,B+(m

d
(h−m

d
)+1)F

(
qd
)h−m

d

)

= mdeg−deg
∑

d|m

d2g−3+deg

(
BdUm

d

∑

h≥0

〈
α; γ1, . . . , γn

〉
g,B+hF

qh−1

)

= mdeg−deg
∑

d|m

d2g−3+deg BdUm
d
Fg,1

(
α; γ1, . . . , γn

)

= mdeg−deg Tm,ℓ

(
Fg,1

(
α; γ1, . . . , γn

))
. �

As a direct consequence, the multiple cover formula implies level m

quasimodularity.

Proposition 17. If the generating series Fg,m satisfies the multiple

cover formula, it satisfies the quasimodularity conjecture. More pre-

cisely,

Fg,m ∈
1

∆(q)m
QMod(m) .

Proof. The descendent potentials for primitive curve classes are weakly

holomorphic quasimodular with pole of order at most 1 and weight 2g−

12+deg, see [29, Theorem 4] and [8, Theorem 9]. The claim thus follows

from Proposition 13. �
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2.3. Multiple cover formula in fiber direction. When the curve

class is a multiple of the fiber class F , the multiple cover formula re-

duces to a property of the Gromov–Witten invariant of elliptic curves.

Relevant properties are conjectured in [38].

Let S → P1 be an elliptic K3 surface with section and let β = mF .

By Section 6, Case 1, we may assume at least one of the insertions is

the point class γ1 = p and g ≥ 1. Let

ι : E →֒ S

be the inclusion of a fiber, representing the class F . Since the point

class is represented by a transverse intersection of E and the section B,

the Gromov–Witten theory of S localizes to the Gromov–Witten theory

of E with the curve class mE. Computation of the obstruction bundle

shows that the invariant is of the form
〈
τa1(p)τa2(γ2) . . . τan(γn)

〉S
g,mF

=
〈
λg−1; τa1(ω)τa2(ι

∗γ2) . . . τan(ι
∗γn)

〉E
g,mE

where λg−1 = cg−1(Eg). In particular, if γi ∈ Q
〈
F
〉
⊕ U⊥ ⊕ Q

〈
p
〉
, the

invariant vanishes. Consider the following generating series

FE
g

(
τa1(γ1) . . . τan(γn)

)
=
∑

m≥0

〈
λg−1; τa1(γ1) . . . τan(γn)

〉E
g,mE

qm

where γi = 1 or ω and
∑
ai +

∑
deg(γi) = g − 1 + n.

The generating series FE
g has a simple description in terms of Eisen-

stein series. The following formula is conjectured in [38].

Lemma 18. For g ≥ 1,

FE
g

(
τg−1(ω)

)
=

g!

2g−1
C2g .

Proof. In [38, Proposition 4.4.7] this formula is given under assuming

the Virasoro constraint for P1 × E. The Virasoro constraint for any

toric bundle over a nonsingular variety which satisfies the Virasoro

constraint is proven in [13]. Combining this result with the Virasoro

constraint for elliptic curves [35], the result follows. �

When β = mF , Conjecture 4 is equivalent to the following proposi-

tion.

Proposition 19. There exists c ∈ Q such that

FE
g

(
τa1(ω) . . . τar(ω)τar+1(1) . . . τar′ (1)

)
= cDr−1

q FE
g

(
τg−1(ω)

)
.
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Proof. Boundary strata with a vertex of genus less than g do not con-

tribute because the invariants involve λh vanishes onM g,n(E,m) when

h ≥ g. If r′ > r, then
∑
ai ≥ g and we can reduce to the case when

r′ = r by the topological recursion on the ψ-monomial in R≥g(Mg,n)

[23]. If r′ = r, then
∑
ai = g− 1 and similar argument as in Section 6,

Case 3 can be applied. Therefore FE
g is proportional to

FE
g

(
τg−1(ω)τ0(ω)

r−1
)
= Dr−1

q FE
g

(
τg−1(ω)

)

where the equality comes from the divisor equation. �

Remark 20. One can find a closed formula for the constant c ∈ Q by

integrating tautological classes on M g,n.

3. Holomorphic anomaly equation

This section contains a proof of Proposition 5. We derive the holo-

morphic anomaly equation for m ≥ 1 from the conjectural multiple

cover formula, such that both are compatible12. It turns out that the

equation is almost identical to the one in the primitive case. Additional

factors appear only in the last two terms, which are specific to K3 sur-

faces. We refer to [34, Section 7.3] for explanations on the appearance

of these terms.

Proof of Proposition 5. Let γ1, . . . , γn ∈ H
∗(S) with

deg =
∑

i

deg(γi) , deg =
∑

i

deg(γi) .

We will simply write γ to denote γ1, . . . , γn. Assume that the multi-

ple cover formula (4) holds for all divisors d | m and all descendent

insertions. Using Lemma 16, also Conjecture 15 holds. By Proposi-

tion 17, the descendent potentials are quasimodular forms of level m

and we can consider the d
dC2

-derivative. We apply the d
dC2

-derivative to

Conjecture 15 and use the commutator relations Lemma 14 to obtain:

d

dC2
Fg,m

(
α; γ

)
=

d

dC2

(
mdeg−degTm,2g−2+degFg,1

(
α; γ

))

= mdeg−deg+1Tm,2g−4+deg
d

dC2
Fg,1

(
α; γ

)
.

We want to explain that the last row precisely recovers the definition

of Hg,m in (1), after applying the holomorphic anomaly equation for

12We should point out that this derivation should be lifted to the cycle-valued
holomorphic anomaly equation. Tautological classes play no role here.
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the primitive series [33, Theorem 4]:

d

dC2
Fg,1

(
α; γ

)
= Hg,1

(
α; γ

)
.

We do so by explaining how each term of Hg,1

(
α; γ

)
is affected:

(i) The degree deg of Fg−1,1

(
α; γ∆P1

)
has increased by one. The

genus, however, dropped by 1. Thus, the first term precisely

matches the multiple cover formula, i.e.

Fg−1,m

(
α; γ∆P1

)
= mdeg−deg+1Tm,2g−4+deg

(
Fg−1,1

(
α; γ∆P1

))
.

(ii) The virtual class is non-zero only for curve class β = 0 and

genus 0, 1, see Section 0. In these cases, the potential Fvir
g2 is

simply a number and the operator Tm,ℓ acts non-trivially only

on Fg1,m. We distinguish the two cases:

g2 = 0. The virtual class is given by the fundamental class and

the integral is given by intersection pairing on S. Non-trivial

terms are obtained from δ∨i = 1 or F . If δ∨i = 1 then

deg(γI2) = deg(γI2) = 2 .

The modified degree deg of Fg1,1

(
αI1; γI1δi

)
has decreased by 2,

whereas deg decreased by 1 (the insertion δi = F contributes

deg = 1). The term thus matches the multiple cover formula:

Fg1,m

(
αI1; γI1δi

)

= mdeg−deg+1Tm,2g−4+deg

(
Fg1,1

(
αI1; γI1δi

))
.

If δ∨i = F then

deg(γI2) = 1 , deg(γI2) = 2 .

The modified degree deg of Fg1,1

(
αI1; γI1δi

)
has decreased by 2,

whereas deg decreased by 1. The term matches the multiple

cover formula.

g2 = 1. The virtual class is given by c2(S) and the integral

is given by intersection pairing on S. Non-trivial terms are

obtained only from δ∨i = 1 and

deg(γI2) = deg(γI2) = 0 .

Analogously to case (i), the degree deg of Fg1,1

(
αI1; γI1δi

)
has

increased by 1, deg remained unchanged, and the genus dropped

by 1. The term matches the multiple cover formula.
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(iii) The modified degree deg of Fg,1

(
αψi; γ1, . . . , π

∗π∗γi, . . . , γn
)
has

decreased by 2, whereas deg decreased by 1. Again we find that

the term matches the multiple cover formula

Fg,m

(
αψi; γ1, . . . , π

∗π∗γi, . . . , γn
)

= mdeg−deg+1Tm,2g−4+deg

(
Fg,1

(
αψi; γ1, . . . , π

∗π∗γi, . . . , γn
))
.

(iv) The degree of 〈γi, F 〉Fg,1

(
α; γ1, . . . , F, . . . , γn

)
remains unchanged,

whereas deg decreased by 2. An additional factor of 1
m
therefore

appears:

1

m
〈γi, F 〉Fg,m

(
α; γ1, . . . , F, . . . , γn

)

= mdeg−deg+1Tm,2g−4+deg

(
〈γi, F 〉Fg,1

(
α; γ1, . . . , F, . . . , γn

))
.

(v) The term Fg,1

(
. . . , σ1(γi, γj), . . . , σ2(γi, γj), . . .

)
is similar to the

previous case: deg remains unchanged, whereas deg decreases

by 2, giving rise to an additional factor of 1
m
:

1

m
Fg,m

(
γ1, . . . , σ1(γi, γj), . . . , σ2(γi, γj), . . . , γn

)

= mdeg−deg+1Tm,2g−4+deg

(
Fg,1

(
γ1, . . . , σ1(γi, γj), . . . , σ2(γi, γj), . . . , γn

))

We arrive at the level m holomorphic anomaly equation (1) which ap-

peared in Section 0. �

3.1. Divisor equation. For primitive curve classes, it was pointed out

in [33, Section 3.6, Case (i)] that the holomorphic anomaly equation in

genus 0 is compatible with the divisor equation. For divisibility m, let

d

dγ
= 〈γ, F 〉Dq +m〈γ,W 〉 , γ ∈ H2(S) .

The divisor equation implies that

Fg,m

(
τa1(γ1) . . . τan−1(γn−1)τ0(γn)

)

=
d

dγn
Fg,m

(
τa1(γ1) . . . τan−1(γn−1)

)

+
n−1∑

i=1

Fg,m

(
τa1(γ1) . . . τai−1(γi ∪ γn) . . . τan−1(γn−1)

)
.
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The compatibility with the divisor equation corresponds to

Hg,m

(
τa1(γ1) . . . τan−1(γn−1)τ0(γn)

)
(8)

=
d

dγn
Hg,m

(
τa1(γ1) . . . τan−1(γn−1)

)

− 2kFg,m

(
τa1(γ1) . . . τan−1(γn−1)

)

+

n−1∑

i=1

Hg,m

(
τa1(γ1) . . . τai−1(γi ∪ γn) . . . τan−1(γn−1)

)
,

where k is the weight of Fg,m

(
τa1(γ1) . . . τan−1(γn−1)

)
and we have used

the commutator relation
[ d

dC2
,Dq

]
= −2k .

The same check as in the primitive case works for arbitrary divisibil-

ity. This relies on the fact that the divisor equation for W is the same

as applying the differential operator

Dq = q
d

dq

to the generating series. Indeed, for the curve class β = mB + hF ,

〈β,W 〉 = −2m+ h+m = h−m,

which matches the exponent of qh−m in the generating series Fg,m. The

divisor equation for F acts as multiplication by m on the generating

series.

In Section 6, the refined induction reduces any generating series ul-

timately to genus 0 and 1. We thus have to justify compatibility of the

holomorphic anomaly equation for generating series of the form

F1,m

(
τ0(p)τ0(γ1) . . . τ0(γn)

)
, γi ∈ H

2(S) .

This compatibility however is true. By Proposition 28, the multiple

cover formula, which is compatible with the divisor equation, holds

in genus ≤ 1. Thus, we also find compatibility for the holomorphic

anomaly equation.

Example 21. We consider F0,m

(
τ0(W )2

)
to illustrate the above com-

patibility. To compute H0,m, we use that σ(W ⊠W ) = U⊥, where the

endomorphism σ is as defined in Section 0. Since the curve classes are

contained in U , application of the divisor equation to a basis of U⊥

implies

F0,m

(
τ0(U

⊥)
)
= 0 .
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We find that

H0,m

(
τ0(W )2

)
= −4F0,m

(
τ1(1)τ0(W )

)
+

40

m
F0,m

(
τ0(F )τ0(W )

)
.

In the above notation, γn = W is the second W and k = −10 is the

weight of F0,m

(
τ0(W )

)
. We have to check that

H0,m

(
τ0(W )2

)
= DqH0,m

(
τ0(W )

)
+ 20F0,m

(
τ0(W )

)
.

By the dilaton equation, we can verify

H0,m

(
τ0(W )2

)
− DqH0,m

(
τ0(W )

)

= −2DqF0,m

(
τ1(1)

)
− 4F0,m

(
τ0(W )

)
+

20

m
F0,m

(
τ0(F )τ0(W )

)

= 4DqF0,m

(
∅
)
− 4DqF0,m

(
∅
)
+ 20F0,m

(
τ0(W )

)

= 20F0,m

(
τ0(W )

)
.

Example 22. The above example in genus 0 illustrates how the second

last term in the holomorphic anomaly equation (2) plays a role. We

consider

F1,m

(
τ1(W )τ0(W )

)

to show how the last term, i.e. the term involving σ, interacts non-

trivially with the other terms. The corresponding series H1,m are

H1,m

(
τ1(W )τ0(W )

)
= 2F0,m

(
τ1(W )τ0(W )τ0(1)τ0(F )

)

− 2
(
F1,m

(
τ2(1)τ0(W )

)
+ F1,m

(
τ1(W )τ1(1)

))

+
20

m

(
F1,m

(
τ1(F )τ0(W )

)
+ F1,m

(
τ1(W )τ0(F )

))

−
2

m
F1,m

(
ψ1; ∆U⊥

)
,

H1,m

(
τ1(W )

)
= 2F0,m

(
τ1(W )τ0(1)τ0(F )

)

− 2F1,m

(
τ2(1)

)

+
20

m
F1,m

(
τ1(F )

)
.

Let k = −8 be the weight of F1,m

(
τ1(W )

)
. Then (8) is equivalent to

H1,m

(
τ1(W )τ0(W )

)
= DqH1,m

(
τ1(W )

)
− 2kF1,m

(
τ1(W )

)
.

The term F1,m

(
ψ1; ∆U⊥

)
can be computed using

ψ1 = [δ1] +
1

24
[δ0] ∈ A

1(M 1,2) ,

where [δ0] ∈ A
1(M 1,2) is the class of the pushforward of the fundamen-

tal class under the map

M 0,4 →M 1,2
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gluing the third and fourth markings and [δ1] is the class of the bound-

ary divisor of curves with a rational component carrying both markings.

The genus 0 contribution vanishes by the divisor equation. Since the

rank of U⊥ is 20, we obtain the genus 1 contribution

F1,m

(
ψ1; ∆U⊥

)
= 20F1,m

(
τ0(p)

)
.

The divisor equation for F implies that

20

m
F1,m

(
τ1(W )τ0(F )

)
= 20F1,m

(
τ1(W )

)
+

20

m
F1,m

(
τ0(p)

)
.

We can now verify the compatibility by a direct computation using

divisor and dilaton equation:

H1,m

(
τ1(W )τ0(W )

)
= DqH1,m

(
τ1(W )

)
− 2F1,m

(
τ1(W )

)
− 2F1,m

(
τ1(W )τ1(1)

)

+
20

m
F1,m

(
τ0(p)

)
+

20

m
F1,m

(
τ1(W )τ0(F )

)

−
2

m
F1,m

(
ψ1; ∆U⊥

)

= DqH1,m

(
τ1(W )

)
− 4F1,m

(
τ1(W )

)

+
20

m
F1,m

(
τ0(p)

)
+

20

m
F1,m

(
τ1(W )τ0(F )

)

−
40

m
F1,m

(
τ0(p)

)

= DqH1,m

(
τ1(W )

)
+ 16F1,m

(
τ1(W )

)
.

4. Relative holomorphic anomaly equation

In this section, we first state the degeneration formula for the reduced

virtual class under the degeneration to the normal cone. For primitive

curve class, the formula is proven in [29]. For sake of completeness, we

summarize a proof for arbitrary divisibility in Appendix A. Then, we

state the relative holomorphic anomaly equation and prove the com-

patibility with the degeneration formula.

4.1. Degeneration formula. Let S → P1 be an elliptic K3 surface

with a section. For m ≥ 1, let β = mB + hF be a curve class. Choose

a smooth fiber E of S → P1. Let ǫ : S → A1 be the total space of the

degeneration to the normal cone of E in S. This space corresponds to

the degeneration

(9) S  S ∪E P1 × E .

Over the center ι : 0 →֒ A1, the fiber is S ∪E P1×E and over t 6= 0, the

fiber is isomorphic to S. Let M g,n(ǫ, β) be the moduli space of stable
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maps to the degeneration S. Over t 6= 0, this moduli space is iso-

morphic to M g,n(S, β) and over t = 0, this moduli space parametrizes

stable maps to the expanded target

S̃0 = S ∪E P1 × E ∪E · · · ∪E P1 ×E .

Let

ν = (g1, g2, n1, n2, h1, h2)

be a splitting of the discrete data g, n, h and let βi = mB+hiF be the

splitting of the curve class. An ordered partition of m

µ = (µ1, . . . , µl)

specifies the contact order along the relative divisor E.

Let l = length(µ) and M g,n(S0, ν)µ be the fiber product

(10) M g,n(S0, ν)µ =M g1,n1(S/E, β1)µ ×El M
•

g2,n2
(P1 × E/E, β2)µ

of the boundary evaluations at relative markings13 and let

ινµ : M g,n(S0, ν)µ → M g,n(S0, β)

be the finite morphism. Let ∆El : El → El × El be the diagonal em-

bedding.

Theorem 23. The reduced virtual class of maps to the degenera-

tion (9) satisfies the following properties.

(i) For ιt : {t} →֒ A1, the Gysin pullback of reduced class is given

by

ι!t[Mg,n(ǫ, β)]
red = [M g,n(St, β)]

red .

(ii) For the special fiber,

[M g,n(S0, β)]
red =

∑

ν,µ

∏
i µi

l!
ινµ∗[Mg,n(S0, ν)µ]

red .

(iii) On the special fiber, we have the factorization

[M g,n(S0, ν)µ]
red = ∆!

El

(
[M g1,n1(S/E, β1)µ]

red

× [M
•

g2,n2
(P1 × E/E, β2)µ]

vir
)
.

13We put • to indicate (possibly) disconnected theory. Namely, for each con-
nected component C of the domain curve, intersection of C with the relative divisor
E is nontrivial.
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Proof. Whenm ≥ 1, the reduced class of the disconnected moduli space

M
•

g,n(S/E, β) vanishes on all components parameterizing maps with at

least two connected components. Therefore, disconnected theory can

only appear on the bubble P1 ×E. The proof is given in Appendix A.

�

Denote an ordered cohomology weighted partition by

µ =
(
(µ1, δ1), . . . , (µl, δl)

)
, δi ∈ H

∗(E)

and let ω ∈ H2(E) be the point class. The descendent potential for

the pair (S,E) is defined analogously to the absolute case:

Frel
g,m

(
α; γ1, . . . , γn | µ

)
=
∑

h≥0

〈
α; γ1, . . . , γn | µ

〉S/E
g,mB+hF

qh−m .

The descendent potential for the pair (P1 ×E,E) is defined by

Grel,•
g,m

(
α; γ1, . . . , γn | µ

)
=
∑

h≥0

〈
α; γ1, . . . , γn | µ

〉P1×E/E,•

g,mB+hF
qh .

As a corollary, we get the degeneration formula of reduced Gromov–

Witten invariants.

Corollary 24. Let γ1, . . . , γn ∈ H
∗(S) and choose a lift of these coho-

mology classes to the total space S. Then

Fg,m

(
τa1(γ1) . . . τan(γn)

)
=
∑

ν

∑

µ6=µω

∏
i µi

l!
Frel
g1,m

(
. . . | µ

)
· Grel,•

g2,m

(
. . . | µ∨

)
,

(11)

where

µ∨ =
(
(µ1, δ

∨
1 ), . . . , (µl, δ

∨
l )
)
and µω =

(
(µ1, ω), . . . , (µl, ω)

)
.

Proof. By Theorem 23, we are left to prove that the relative profile µω

on S/E has vanishing contribution. Let x be the intersection of the

section of the elliptic fibration and the fiber E. We consider (E, x)

as an abelian variety. Let K be the kernel of the following morphism

between abelian varieties

El → Pic0(E) , (xi)i 7→ OE

(∑

i

µi(xi − x)
)
.

Consider a stable map f from a curve C to an expanded degeneration of

S/E. The equality f∗[C] = β1 (after pushforward to S) in H2(S,Z) lifts

to a rational equivalence of line bundles on S because the cycle-class

map

c1 : Pic(S)→ H2(S,Z) ∼= H2(S,Z)
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is injective. Intersecting with the relative divisor, the two line bundles

are, respectively, OE(
∑
µixi) and OE(mx). Thus, we see that the

evaluation map M g1,n1(S/E, β1) → El factors through K. Since K ⊂

El has codimension 1 a generic point on El does not lie on K and thus

the contribution from the relative profile µω vanishes. �

4.2. Relative holomorphic anomaly equations. Assuming quasi-

modularity, we have two ways to compute the derivative of Fg,m with

respect to C2:

(i) Apply the degeneration formula Corollary 24, together with the

holomorphic anomaly equations for (S,E) and (P1 × E,E).

(ii) Apply the holomorphic anomaly equation (3) for S, followed by

the degeneration formula for each term.

We argue that both ways yield the same result. This compatibility is

parallel to the compatibility proved in [34, Section 4.6]. We first state

the holomorphic anomaly equations for the relevant relative geometries.

Relative (P1 × E,E). Consider π : P1 × E → P1 as a trivial elliptic

fibration over P1. For the pair (P1 × E,E) the holomorphic anomaly

equation holds for cycle-valued generating series [34]. The equation

for descendent potentials can thus be obtained by integrating against

tautological classes α ∈ R∗(Mg,n). For insertions γi ∈ H
∗(P1 × E,Q)

we will simply write γ. Let µ =
(
(µ1, δ1), . . . , (µl, δl)

)
and µ′ be ordered

cohomology weighted partitions. We denote by

G∼,•
g,m

(
µ | α; γ | µ′

)
=
∑

h≥0

〈
µ | α; γ | µ′

〉P1×E,∼,•

g,mP1+hE
qh

the disconnected rubber generating series for P1×E relative to divisors

at 0 and ∞. Let ∆E ⊂ E ×E be the class of the diagonal. Define the
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generating series

Prel,•
g,m

(
α; γ | µ

)

= G
rel,•
g−1,m

(
α; γ,∆P1 | µ

)

+ 2
∑

g=g1+g2
{1,...,n}=I1⊔I2
∀i∈I2:γi∈H2(E)

h≥0

∑

b;b1,...,bh
l1,...,lh

∏h
i=1 bi
h!

Grel,•
g1,m

(
αI1 ; γI1 | ((b, 1), (bi,∆E,ℓi)

h
i=1)
)

× G∼,•
g2,m

(
((b, 1), (bi,∆

∨
E,ℓi

)hi=1) | αI2; γI2 | µ
)

− 2
n∑

i=1

Grel,•
g,m

(
αψi; γ1, . . . , γi−1, π

∗π∗γi, γi+1, . . . , γn | µ
)

− 2

l∑

i=1

Grel,•
g,m

(
α; γ | (µ1, δ1), . . . , (µi, ψ

rel
i π

∗π∗δi), . . . , (µl, δl)
)

where ψrel
i is the cotangent line class at the i-th relative marking and

∆E =
∑

∆E,li⊗∆∨
E,li

is the pullback of the Künneth decomposition of

∆E at the corresponding relative marking. The holomorphic anomaly

equation takes the form:

Proposition 25. ([34, Proposition 20]) Grel,•
g,m (α; γ | µ) is a quasimod-

ular form and

d

dC2
Grel,•
g,m (α; γ | µ) = Prel,•

g,m (α; γ | µ) .

Relative (S,E). Since the log canonical bundle of (S,E) is nontrivial,

relative moduli spaces in fiber direction have nontrivial virtual funda-

mental class. Define

Fvir−rel
g,0 (α; γ | ∅) =

∑

h≥0

〈
α; γ | ∅

〉S/E,vir

g,hF
qh .

Recall that we denote the pullback of the diagonal of P1 as

∆P1 = 1⊠ F + F ⊠ 1 =

2∑

i=1

δi ⊠ δ
∨
i .
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Define a generating series

Hrel
g,m

(
α; γ | µ

)

= Frel
g−1,m

(
α; γ,∆P1 | µ

)

+ 2
∑

g=g1+g2
{1,...,n}=I1⊔I2

i∈{1,2}

Frel
g1,m

(
αI1 ; γI1, δi | µ

)
Fvir−rel
g2,0

(
αI2; γI2, δ

∨
i | ∅

)

+ 2
∑

g=g1+g2
{1,...,n}=I1⊔I2
∀i∈I2:γi∈H2(E)

h≥0

∑

b;b1,...,bh
l1,...,lh

∏h
i=1 bi
h!

Frel
g1,m

(
αI1 ; γI1 | ((b, 1), (bi,∆E,ℓi)

h
i=1)
)

× G∼,•
g2,m

(
((b, 1), (bi,∆

∨
E,ℓi

)hi=1) | αI2; γI2 | µ
)

− 2

n∑

i=1

Frel
g,m

(
αψi; γ1, . . . , γi−1, π

∗π∗γi, γi+1, . . . , γn | µ
)

− 2

l∑

i=1

Frel
g,m

(
α; γ | ((µ1, δ1), . . . , (µi, ψ

rel
i π

∗π∗δi), . . . , (µl, δl))
)

+
20

m

n∑

i=1

〈γi, F 〉F
rel
g,m

(
α; γ1, . . . , γi−1, F, γi+1, . . . , γn | µ

)

−
2

m

∑

i<j

Frel
g,m

(
α; γ1, . . . , σ1(γi, γj)︸ ︷︷ ︸

ith

, . . . , σ2(γi, γj)︸ ︷︷ ︸
jth

, . . . , γn | µ
)
.

The conjectural holomorphic anomaly equation for (S,E) has the fol-

lowing form:

Frel
g,m(α; γ | µ) ∈

1

∆(q)m
QMod(m)

and

(12)
d

dC2

Frel
g,m(α; γ | µ) = Hrel

g,m(α; γ | µ) .

Proposition 26. Let m ≥ 1. Assuming quasimodularity for Fg,m

and Frel
g,m, the holomorphic anomaly equations are compatible with the

degeneration formula in the above sense.

Proof. The proof given in [34, Proposition 21] treats virtual fundamen-

tal classes, not reduced classes. The splitting behavior of the reduced

class with respect to restriction to boundary divisors [29, Section 7.3]

calls for a slight adaptation of the proof. For this, we introduce a formal

variable ε with ε2 = 0. We can then interpret reduced Gromov–Witten
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invariants of the K3 surface as integrals against the class14

[M g,n(S, β)]
vir + ε [Mg,n(S, β)]

red

followed by taking the [ε]-coefficient. We consider a similar class for

S/E. This class has the advantage of satisfying the usual splitting

behavior of virtual fundamental classes. Thus, for this class one can

follow the proof of compatibility given in [34, Proposition 21]. All the

terms appearing in the computation (ii) also appear in computation (i).

We are left with proving the cancellation of the remaining terms in (i).

This follows from comparing ψrel
i -class and the ψ-class pulled-back from

the stack of target degeneration [34, Lemma 22]. In particular, we

match the following terms: the third term of Hrel times Grel,• with the

fourth term of Frel times Prel,•; and analogously for the fifth term of

Hrel times Grel,• with the second term of Frel times Prel,•. �

The main advantage of the holomorphic anomaly equation is that it

is compatible with the degeneration formula. Thus, the genus reduc-

tion from the degeneration formula connects the low genus results with

arbitrary genus predictions. On the other hand, it is not even clear to

say what should be the compatibility of the multiple cover formula and

the degeneration formula.

5. Tautological relations and initial condition

This section contains a proof of the multiple cover formula in genus 0

and genus 1 for any divisibility m. It is a direct consequence of the

KKV formula. However, as initial condition for our induction we also

require a special case in genus 2, which cannot be easily deduced from

the KKV formula. We treat this descendent potential separately, using

double ramification relations [3] for K3 surfaces. This approach is likely

to give relations in any genus and will be pursued in the future.

5.1. Double ramification relations. In this section we recall double

ramification relations with target variety developed in [2, 3].

Let Picg,n be the Picard stack for the universal curve over the stack

of prestable curves Mg,n of genus g with n markings. Let

(13) π : C→ Picg,n, si : Picg,n → C, L→ C, ωπ → C

14We thank G. Oberdieck for pointing this out.
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be the universal curve, the i-th section, the universal line bundle and

the relative dualizing sheaf of π. The following operational Chow

classes on Picg,n are obtained from the universal structure (13):

• ψi = c1(s
∗
iωπ) ∈ A

1
op(Picg,n) ,

• ξi = c1(s
∗
iL) ∈ A

1
op(Picg,n) ,

• η = π∗ (c1(L)
2) ∈ A1

op(Picg,n) .

Let A = (a1, . . . , an) ∈ Zn be a vector of integers satisfying

(14)
∑

i

ai = d ,

where d is the degree of the line bundle. We denote by P c,r
g,A,d the

codimension c component of the class

∑

Γ∈Gg,n,d

w∈WΓ,r

r−h1(Γδ)

|Aut(Γδ)|
jΓ∗

[
n∏

i=1

exp

(
1

2
a2iψi + aiξi

) ∏

v∈V (Γδ)

exp

(
−
1

2
η(v)

)

∏

e=(h,h′)∈E(Γ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]
.

We refer to [3] for details about the notations. This expression is

polynomial in r when r is sufficiently large. Let P c
g,A,d be the constant

part of P c,r
g,A,d.

Theorem 27. ([3, Theorem 8]) P c
g,A,d = 0 for all c > g in Ac

op(Picg,n).

After restricting P c
g,A,d to (14), this expression is a polynomial in

a1, . . . , an−1. The polynomiality will be used to get refined relations.

Let L be a line bundle on S with degree
∫

β

c1(L) = d .

The choice of a line bundle L induces a morphism

ϕL : M g,n(S, β)→ Picg,n, [f : C → S] 7→ (C, f ∗L) .

Then Theorem 27 gives relations

(15) P c
g,A,d(L) = ϕ∗

LP
c
g,A,d ∩ [M g,n(S, β)]

red = 0 for all c > g

in Ag+n−c

(
M g,n(S, β)

)
.
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5.2. Compatibility II. The relations among descendent potentials

coming from tautological relations on M g,n(S, β) are compatible with

the multiple cover formula. This follows from two observations. Firstly,

the splitting behavior of the reduced class, discussed in Section 2.2, is

crucial. It is already crucial to justify compatibility with respect to

boundary restriction for tautological classes pulled back from M g,n.

For tautological relations on M g,n(S, β), a second fact, which we want

to explain below, is essential for the compatibility.

For c > g > 0, A ∈ Zn and b ∈ Z, consider the series of relations

P c
g,bA,db(L

⊗b) = 0

obtained by tensoring the line bundle L by b times. For each coefficient

of a monomial in ai-variables, this expression is polynomial in b and

hence each of b-variable is a relation. As a consequence, each term of

a relation P c
g,A,m(F ) gives the same value of

mdeg−deg ,

where deg(ξ) = 1 and deg(ξ) = 0, as in Definition 0.1. The same holds

true with the roles of F and W interchanged. Thus, the relations are

compatible with the operator

mdeg−degTm,2g−2+deg ,

which gives the multiple cover formula in Conjecture 15.

5.3. Initial condition. The Katz–Klemm–Vafa (KKV) formula im-

plies that the generating series of λg-integrals

Fg,m

(
λg; ∅

)

satisfy the multiple cover formula [36]. Here, λg = cg(Eg) is the top

Chern class of the rank g Hodge bundle Eg on M g(S, β). The KKV

formula will be the starting point of our genus induction.

The class λg is a tautological class by the Grothendieck–Riemann–

Roch computation ([15]) but the formula is rather complicated. Instead

we use an alternative expression of λg in terms of double ramification

cycle, proven in [17]. We recall that the class (−1)gλg is equal to

the double ramification cycle DRg(∅) with the empty condition. By

[17, Theorem 1] the class DRg(∅) can be written as a graph sum of

tautological classes without κ-classes.

Proposition 28. The multiple cover formula holds in genus 0 and

genus 1 for all m ≥ 1.
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Proof. When g = 0, 1, the tautological ring R∗(M g,n) is additively gen-

erated by boundary strata ([19, 37]). Thus, one can replace descendents

α ∈ R∗(M g,n) by classes in H∗(S). By the divisor equation and the di-

mension constraint, we can reduce to the case F0,m

(
∅
)
and F1,m(τ0(p)).

The genus 0 case is covered by the full Yau–Zaslow formula [21, 36].

The genus 1 case follows from the genus 2 KKV formula. Using the

boundary expression of λ2 on M 2, we have

F2,m

(
λ2; ∅

)
=

1

240
F1,m

(
ψ1; ∆S

)
+

1

1152
F0,m

(
; ∆S,∆S

)

=
1

10
F1,m

(
τ0(p)

)
+

1

60
D2

qF0,m

(
∅
)
,

where ∆S ⊂ S×S is the diagonal class. Therefore, F1,m

(
τ0(p)

)
satisfies

Conjecture 15. �

In the argument below, we will use tautological relations on M g,n

which are recently obtained by r-spin relations. For convenience, we

summarize the result.

Proposition 29. ([23]) Let g ≥ 2 and n ≥ 1. Consider tautological

classes on M g,n.

(i) (Topological Recursion Relations) Any monomial of ψ-classes

of degree at least g can be represented by a tautological class

supported on boundary strata without κ-classes.

(ii) Any tautological class of degree g−1 can represented by a sum of

a linear combination of ψg−1
1 , . . . , ψg−1

n and a tautological class

supported on boundary strata.

Proof. The proof of (i) follows from the proof of [23, Lemma 5.2] (see

also [12, page 3]). By [23, Proposition 3.1] (or [10, Theorem 1.1])

the degree g − 1 part Rg−1(Mg,n) is spanned by ψg−1
1 , . . . , ψg−1

n . Since

relations used in the proof are all tautological, the boundary expression

is tautological and thus we obtain (ii). �

Together with the boundary expression for λg+1 we obtain the fol-

lowing more general consequence of the KKV formula:

Proposition 30. Let m ≥ 1 and g ≥ 1. Assume the multiple cover

formula Conjecture 15 holds for m and all descendents of genus < g.

Then Conjecture 15 holds for

Fg,m

(
τg−1(p)

)
.
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Proof. Let δ ∈ R1(M g) be the boundary divisor corresponding to a

curve with nonseparating node. Denote two half edges as h and h′.

Recall that (−1)gλg is equal to the double ramification cycle DRg(∅)

with the empty condition. We use this formula for genus g+1. By [17,

Theorem 1],

(−1)g+1λg+1 = DRg+1(∅)

=
1

2

[
−

1

(g + 1)!

r−1∑

w=0

(w2

2
(ψh + ψh′)

)g]
r1
δ + lower genus ,

where [· · · ]r1 is the coefficient of the linear part of a polynomial in r.

The leading term is nonzero by Faulhaber’s formula.

By Proposition 29 (i) any ψ-monomial in R≥g(Mg,n) can be repre-

sented by a sum of tautological classes supported on boundary strata

without κ classes. There is only one graph with a genus g vertex (with

a rational component carrying both markings). The graph is decorated

with a polynomial of degree g − 1 in ψ- and κ-classes. By Proposition

29 (ii) this tautological class can be represented by a sum of a multiple

of ψg−1 and tautological classes supported on boundary strata. We find

that 15

(ψ1 + ψ2)
g = c

g 0

1

2

ψg−1

+ lower genus

in Rg(M g,2) for some c ∈ Q. Therefore, it suffices to prove that c is

nonzero. Recall that λgλg−1 vanishes on Mg,n \M
rt
g,n, so∫

Mg,2

(ψ1 + ψ2)
gλgλg−1 = c

∫

Mg,1

ψg−1
1 λgλg−1 .

The left hand side of the equation is nonzero by [17, Lemma 8], which

concludes the proof. �

We now consider the case of genus two. By the Getzler–Ionel van-

ishing onM 2,n, the dimension constraint, and the divisor equation any

descendent insertion reduces to the following three cases:

F2,m

(
τ1(p)

)
, F2,m

(
τ0(p)

2
)
, F2,m

(
τ1(γ)τ0(p)

)
with γ ∈ H2(S) .

The first case is treated in Proposition 30 and follows from the KKV

formula in genus three and lower genus. The second case for m = 2

is treated as part of the proof of Theorem 1 in Section 6. We use the

double ramification relation (15) to prove the multiple cover formula

15The number under each vertex is the genus and legs correspond to markings.
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for the third case. The point class p will be obtained as the product of

F and W .

Proposition 31. For γ ∈ H2(S), the generating series F2,m(τ1(γ)τ0(p))

satisfies Conjecture 15.

Proof. We will use relations in A2+n−3

(
M2,n(S, β)

)
:

P 3
2,A,m(F ) = 0

associated to the line bundle OS(F ) on S. More precisely, we will

distinguish two cases γ ∈ U and γ ∈ U⊥ and set respectively

A = (a1 , m− a1) , A = (a1 , a2 , m− a1 − a2) .

Refined relations are then obtained by considering particular monomi-

als in the ai, as outlined in the previous section. The η-class vanishes

in this case because 〈F, F 〉 = 0 and, for the same reason, ξ2i vanishes.

Define

X = F2,m

(
τ1(γ)τ0(p)

)
.

The case γ = F is treated first. As explained in Section 5.1, the

tautological relations are polynomial in ai and we may obtain a refined

relation by considering the [a41]-coefficient of

P 3
2,A,m(F )|a2=m−a1 .

We will only need to consider boundary strata which both:

• contribute to X and

• contribute to the [a41]-coefficient.

These two properties simplify the calculation significantly. By the

splitting property of the reduced class, a relevant boundary stratum

is a tree with one genus 2 vertex and contracted genus 0 components.

The integrals are given by the intersection product of the correspond-

ing insertions. In the case with only two markings, the only relevant

stratum is16

h h′
1

2

.

The weight factor for this stratum is

w(h)w(h′)

2
= −

m2

2
.

16The genus 2 vertex is represented by a filled node and other nodes represent
genus 0 vertices. Labeled half-edges correspond to markings.
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This stratum, therefore, cannot contribute to the [a41]-coefficient, since

ψ-classes on the genus 0 component vanish. It remains to determine

the contributions from the trivial graph

1 2

We will order the terms by the total degree deg(ψ) in the ψ-classes.

(0) deg(ψ) = 0. The relation we consider is of codimension three.

This case is therefore impossible by virtue of ξ2i = 0.

(1) deg(ψ) = 1. This case results in non-trivial terms, discussed

below.

(2) deg(ψ) ≥ 2. We may apply Proposition 29 (i) to reduce to the

descendent F2,m

(
τ1(p)

)
. This descendent is covered by Propo-

sition 30.

Therefore, up to lower genus data, the [a41]-coefficient is

−
1

2
ψ1ξ1ξ2 −

1

2
ψ2ξ1ξ2 .

Integrating

ev∗2(W )P 3
2,A,m(F )|a2=m−a1

against the reduced class, we find (up to lower genus data)

−
1

2
X −

m

2
F2,m

(
τ1(p)

)
,

where the second term is obtained by application of the divisor equa-

tion. We thus find that X is a linear combination of terms which

satisfy Conjecture 15. Switching the role of F and W , we obtain the

same result for γ =W .

Next, we consider γ ∈ U⊥. The following vanishing of intersection

products will be used frequently:

〈γ, F 〉 = 0 , 〈γ,W 〉 = 0 , 〈γ, β〉 = 0 .

We use a similar argument as above, this time, however, we use three

markings and consider the [a31a2]-coefficient of17

(16) ev∗1(γ) ev
∗
2(W )P 3

2,A,m(F )|a3=m−a1−a2 .

17We are grateful to the referee for pointing out a mistake in an earlier version
of the text. It has become clear that the choice of monomial, leading to non-
trivial relations, is a very subtle one. Symmetry in the ai and the insertions causes
cancellation in many cases. We plan to come back to this in future work.
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By the above vanishing of intersection products, the only possible trees

with non-trivial contribution are

2

3

1
h h′ ,

1

3

2
h h′ .

The weight factor for the right stratum is

w(h)w(h′)

2
= −

(m− a2)
2

2
.

Since ψ-classes on the genus 0 component vanish, the power of a1 in

any monomial obtained from this stratum is bounded by two. The

contribution to the [a31a2]-coefficient is, therefore, zero.

Next, we explain the contributions from the left stratum. Note that

the left vertex is of genus 2 with two markings and we may apply

the same reasoning as in the discussion for γ = F above. Here, the

deg(ψ) = 0 term ξ1ξ2 has trivial contribution due to 〈γ, F 〉 = 0. The

deg(ψ) = 1 terms ψhξ2, ψhξ3 have vanishing contribution by application

of the divisor equation for γ. Non-trivial contributions are obtained

only from

ψ1ξ2 , ψ1ξ3 .

These two terms have contributions

−
(m− a1)

2

4
a21a2X , −

(m− a1)
2

4
a21a3X .

The [a31a2]-coefficients, however, cancel due to a3 = m − a1 − a2. It

remains to determine the contributions from the trivial graph:

1 2 3

As above, we order the terms by the total degree deg(ψ) in the ψ-

classes.

(0) deg(ψ) = 0. The relation we consider is of codimension three.

Since ξ2i = 0, the class ξ1 must appear. This term, however,

vanishes due to 〈γ, F 〉 = 0.

(1) deg(ψ) = 1. This case results in non-trivial terms corresponding

to ψ1 or ψ3, discussed below. The choice of the monomial [a31a2]

excludes the appearance of ψ2.

(2) deg(ψ) = 2. This case results in non-trivial terms corresponding

to ψ1ψ3 or ψ2
3 , discussed below. The choice of the monomial

[a31a2] excludes the appearance of ψ2
1.
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(3) deg(ψ) = 3. As above, this case reduces to the descendent

F2,m

(
τ1(p)

)
which is covered already.

The contributions from deg(ψ) ∈ {1, 2} are:

ψ1ξ2ξ3 →
1

2
a21a2a3F2,m

(
τ1(γ)τ0(p)τ0(F )

)

=
1

2
a21a2(m− a1 − a2)mX ,

ψ3ξ2ξ3 →
1

2
a23a2a3F2,m

(
τ0(γ)τ0(p)τ1(F )

)

=0 ,

ψ1ψ3ξ2 →
1

2
a21

1

2
a23a2F2,m

(
τ1(γ)τ0(p)τ1(1)

)

= a21a2(m− a1 − a2)
2X ,

ψ1ψ3ξ3 →
1

2
a21

1

2
a33F2,m

(
τ1(γ)τ0(W )τ1(F )

)

=
1

4
a21(m− a1 − a2)

3X + (lower genus) ,

ψ2
3ξ2 →

1

8
a43a2F2,m

(
τ0(γ)τ0(p)τ2(1)

)

=
1

8
a2(m− a1 − a2)

4X ,

ψ2
3ξ3 →

1

8
a43a3F2,m

(
τ0(γ)τ0(W )τ2(F )

)

=0 .

The third calculation uses the dilaton equation. All of the other calcula-

tions are obtained by application of the divisor equation. Additionally,

the fourth calculation involves Proposition 29. The only stratum with

a genus 2 vertex (i.e. with both markings on a contracted genus 0 com-

ponent) has vanishing contribution due to 〈γ, F 〉 = 0 and, therefore,

the relation reduces to lower genus descendents. The total contribution

to [a31a2] is

−
1

2
mX − 2mX +

3

2
mX −

1

2
mX = −

3

2
mX .

We find that X is a linear combination of terms which satisfy Conjec-

ture 15.

�

Remark 32. In fact, for γ ∈ U⊥ the above generating series vanishes

(and thus trivially satisfies the multiple cover formula). A proof in the

primitive case is given in [9, Lemma 4].
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6. Proof of Theorem 1 and 3

6.1. Proof of Theorem 1. The proof proceeds via induction on the

pair (g, n) ordered by the lexicographic order: (g′, n′) < (g, n) if

• g′ < g or

• g′ = g and n′ < n .

Recall the dimension constraint of insertions:

g + n = deg(α) +
∑

i

deg(γi) .

We separate the proof into several steps.

Case 0. The genus 0 case is covered by Proposition 28. This serves as

the start for our induction.

Case 1. If all cohomology classes γi satisfy deg(γi) ≤ 1, then deg(α) ≥

g and by the strong form of Getzler–Ionel vanishing [15, Proposition 2]

we have α = ι∗α
′ with α′ ∈ R∗(∂M g,n) and ι : ∂M g,n → M g,n. We are

thus reduced to lower (g, n).

Case 2. Assume deg(α) ≤ g − 2 or equivalently, there exist at least

two descendents of the point class. We use the degeneration to the

normal cone of a smooth elliptic fiber:

S  S ∪E (P1 × E) .

We specialize the point class to the bubble P1×E. Let C = C ′∪C ′′ be

the splitting of a domain curve appearing in the degeneration formula

in Theorem 23. Namely, C ′ is the component on S and C ′′ is the

component on P1 × E. We argue that this splitting has non-trivial

contribution only for g(C ′) < g. If g(C ′) = g, this forces C ′′ to be a

disconnected union of two rational curves. Since the degree of the curve

class along the divisor is 〈2B + hF, F 〉 = 2, the two descendents of the

point class then force the cohomology weighted partition to be (1, 1)2

on the bubble or, equivalently, (1, ω)2 for (S,E). This contribution

vanishes because there are no curves which can satisfy this condition

(if (1, ω)2 is represented by a generic point in E2, see Corollary 24).

Case 3. Assume deg(α) = g − 1 or equivalently, there exists only

one desecendent of the point class. We may thus assume γ1 = p. If

n = 1, g ≥ 2, we can move τg−1(p) to the bubble and the genus on S

drops.
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When n ≥ 2, moving the point class to the bubble as in Case 2 may

not reduce the genus. In particular, moving τ0(p) to the bubble has

non-trivial contribution from rational curves on the bubble. On the

other hand, if a ≥ 1, moving τa(p) to the bubble reduces the genus on

S because of the dimension constraint.

We use Buryak, Shadrin and Zvonkine’s description of the top tauto-

logical group Rg−1(Mg,n) [10]. For any α ∈ R
g−1(M g,n) the restriction

of α to Mg,n is a linear combination of

(17) Rg−1(Mg,n) = Q
〈
ψg−1
1 , ψg−1

2 , . . . , ψg−1
n

〉

and the boundary term is also tautological class in Rg−1(∂M g,n). By

the divisor equation and subsequent use of (17), we can reduce to cases

for ≤ (g, 2). When g ≥ 3, (17) has a different basis

Rg−1(Mg,2) = Q
〈
ψg−1
1 , ψ1ψ

g−2
2

〉

which is an easy consequence of the generalized top intersection for-

mula. Therefore, we may assume the descendent of the point class is

of the form τa(p) with a ≥ 1. Now, specializing this insertion to the

bubble P1 × E reduces the genus and hence the same argument as in

Case 2 applies. The genus 2 case is covered by Proposition 31.

Relative vs. absolute. We reduced to invariants for (S,E) with genus

g′ < g. As explained in the proof of [29, Lemma 31] (see also [28]),

the degeneration formula provides an upper triangular relation between

absolute and relative invariants for all pairs ≤ (g′, n′). Thus, our in-

duction applies.

6.2. Proof of Theorem 3. We argue by showing that each induc-

tion step in the proof of Theorem 1 is compatible with the holomor-

phic anomaly equation. Nontrivial step appears when the degenera-

tion formula is used. From the compatibility result Proposition 26, we

are reduced to proving the relative holomorphic anomaly equation for

lower genus relative generating series Frel
g′,2 for (S,E) and relative gen-

erating series for (P1 × E,E). The holomorphic anomaly equation for

(P1 × E,E) is established in [33]. Because of the relative vs. absolute

correspondence [28], we are reduced to proving the holomorphic anom-

aly equation for Fg′,2 in genus 0, 1 and some genus 2 descendents. We

proved the multiple cover formula for these cases in Section 5, which

implies the holomorphic anomaly equation by Proposition 5.
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Remark 33. Parallel argument shows that we can always reduce the

proof for arbitrary descendent insertions to the case when the number

of point insertions is less than or equal to m− 1.

7. Examples

Example 34. We compute F1,2

(
τ1(F )

)
via topological recursion in

genus one and illustrate Conjecture 15. Let [δ0] ∈ A1(M1,1) be the

pushforward of the fundamental class under the gluing map

M 0,3 →M 1,1 .

Since

ψ1 =
1

24
[δ0] ∈ A

1(M 1,1) ,

we obtain

F1,1

(
τ1(F )

)
=

1

24
F0,1

(
τ0(F )τ0(∆S)

)
=

1

12
F0,1

(
τ0(F )τ0(F ×W )

)

=
1

12
DqF0,1 ,

where ∆S ⊂ S × S is the diagonal class. Analogously,

F1,2

(
τ1(F )

)
=

1

24
F0,2

(
τ0(F )τ0(∆S)

)
=

1

3
DqF0,2 .

Using the multiple cover formula in genus zero

F0,2 = T2F0,1 +
1023

8192
F0,1(q

2) ,

we obtain

F1,2

(
τ1(F )

)
=

1

3
DqF0,2 = 2T2

1

12
DqF0,1 +

1023

1024
B2

1

12
DqF0,1

= 2T2F1,1

(
τ1(F )

)
+ (20 − 2−10)B2F1,1

(
τ1(F )

)
,

in perfect agreement with Conjecture 15 using the formula for T2,0 from

Lemma 12.

Example 35. We compute F2,2(τ0(p)
2) via degeneration formula and

verify the multiple cover formula. The first two terms are computed

by the classical geometry of K3 surface in [32]. For simplicity we write

F1,2 = F1,2(τ0(p)). The relative invariants for (S,E) can be written in

terms of absolute invariants:

Lemma 36. (i) Frel
0,2

(
∅ | (1, 1)2

)
= 2F0,2,

(ii) Frel
1,2

(
∅ | (1, 1), (1, ω)

)
= F1,2 − 2F0,2DqC2,

(iii) Frel
1,2

(
∅ | (2, 1)

)
= 1

3
DqF0,2 − 4C2F0,2.
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Proof. It is a standard computation of the relative vs. absolute corre-

spondence [28]. �

The relative invariants for (P1 × E,E) can be computed by the

Gromov–Witten invariants of E.

Lemma 37. (i) Grel
0,1

(
τ0(p) | (1, 1)

)
= 1, Grel

0,1

(
∅ | (1, ω)

)
= 1,

(ii) Grel
1,1

(
τ0(p) | (1, ω)

)
= DqC2, Grel

1,1

(
τ0(p)

2 | (1, 1)
)
= 2DqC2,

(iii) Grel
2,1

(
τ0(p)

2 | (1, ω)
)
= (DqC2)

2,

(iv) Grel
1,2

(
τ0(p)

2 | (2, ω)
)
= D2

qC2, Grel
1,2

(
τ0(p)

2 | (1, ω)2
)
= D3

qC2.

Consider the degeneration where two point insertions move to the

bubble P1 × E. By Theorem 23,

F2,2

(
τ0(p)

2
)
=
(
F1,2 − 2F0,2DqC2

)
4DqC2 +

(1
3
DqF0,2 − 4C2F0,2

)
2D2

qC2

+ (2F0,2)
1

2

(
D3

qC2 + 4(DqC2)
2
)

= 36q + 8760q2 + 754992q3 + 36694512q4 + · · · .

On the other hand, the primitive generating series

F2,1

(
τ0(p)

2
)
=

(
DqC2

)2

∆(q)

is computed in [7] and one can apply the multiple cover formula to

obtain a candidate for F2,2

(
τ0(p)

2
)
. The first few terms of the two

generating series match. It is enough to conclude that the two gener-

ating series are indeed equal because the space of quasimodular forms

with given weight is finite dimensional. However, it seems non-trivial

to match the above formula from the degeneration with the formula

provided by Conjecture 15.

Appendix A. A proof of degeneration formula

For a self-contained exposition, we present a proof of the degenera-

tion formula which is parallel to the proof in [29, 30]. When m = 1, 2,

a proof using symplectic geometry was presented in [24].

Perfect obstruction theory. For simplicity assume n = 0. General

cases easily follow from this case. Let ǫ : S → A1 be the total family of

the degeneration and

M g(ǫ, β)→ A1
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be the moduli space of stable maps to the expanded target S̃. For the

relative profile µ, the embedding

ιµ : M g(S0, µ) →֒ Mg(ǫ, β)

can be realized as a Cartier pseudo-divisor (Lµ, sµ).

Let Eǫ → LMg(ǫ,β)
be the perfect obstruction theory constructed in

[27]. Then the perfect obstruction theories E0 and Eµ ofM g(S0, β) and

M g(S0, µ) sit in exact triangles

L∨
0 → ι∗0Eǫ → E0

[1]
−→

L∨
µ → ι∗µEǫ → Eµ

[1]
−→ .

On Mg(S0, µ), the perfect obstruction theory splits as follows. Let E1

and E2 be the perfect obstruction theory of relative stable map spaces

M g(S/E, β1)µ and M g(P
1 × E/E, β2)µ respectively. There exists an

exact triangle

(18)

l(µ)⊕

i=1

(N∨
∆E/E×E)i → E1 ⊞ E2 → Eµ

[1]
−→

where (N∨
∆E/E×E)i is the pullback of the conormal bundle of the diag-

onal ∆E ⊂ E × E along the i-th relative marking.

Reduced class. Let ρ : S̃ → S × A1 → S be the projection. By

pulling back the holomorphic symplectic form on S via ρ, one can

define a cosection of the obstruction sheaf of Eǫ

ObMg(ǫ,β)
→ O ,

see [20, Section 5]. Dualizing the cosection gives a morphism

γ : O[1]→ Eǫ .

Let Ered
ǫ be the cone of γ which gives the reduced class on M g(ǫ, β).

Similarly we can construct

γrel : O[1]→ E1

for the moduli space of relative stable maps M g(S/E, β).

Degeneration formula for reduced class. Restricting γ toM g(S0, β)

and Mg(S0, µ), we get

γ0 : O[1]→ ι∗0Eǫ → E0

γµ : O[1]→ ι∗µEǫ → Eµ
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where the compositions induce reduced classes. The exact triangles

L∨
0 → ι∗0E

red
ǫ → Ered

0

[1]
−→ ,

L∨
µ → ιµE

red
ǫ → Ered

µ

[1]
−→ ,

still hold.

Lemma 38. We have an exact triangle

N∨
∆

El/El×El → Ered
1 ⊞ E2 → Ered

µ

[1]
−→

on M g(S0, µ) compatible with the structure maps to the cotangent

complex.

Proof. Consider the diagram of complexes

O[1]⊞ 0 O[1]

⊕l(µ)
i=1(N

∨
∆E/E×E)i E1 ⊞ E2 Eµ

⊕l(µ)
i=1(N

∨
∆E/E×E)i Ered

1 ⊞ E2 Ered
µ

γrel⊞0 γµ

where the middle horizontal morphisms are the exact triangle from

(18). The square on the top commutes because the cosections for S̃

and (S,E) are both coming from the holomorphic symplectic form on

S. The vertical morphisms are exact triangles and hence induces a map

between cones. �

Now Theorem 23 is a direct consequence of Lemma 38.
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ETH Zürich, Department of Mathematics

Email address : buelles@math.ethz.ch


	0. Introduction
	1. Quasimodular forms and Hecke operators
	2. Multiple cover formula
	3. Holomorphic anomaly equation
	4. Relative holomorphic anomaly equation
	5. Tautological relations and initial condition
	6. Proof of Theorem 1 and 3
	7. Examples
	Appendix A. A proof of degeneration formula
	References

